These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29963943)

  • 1. Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans.
    Cereghetti G; Saad S; Dechant R; Peter M
    Cell Cycle; 2018; 17(13):1545-1558. PubMed ID: 29963943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hydrophobic low-complexity region regulates aggregation of the yeast pyruvate kinase Cdc19 into amyloid-like aggregates
    Grignaschi E; Cereghetti G; Grigolato F; Kopp MRG; Caimi S; Faltova L; Saad S; Peter M; Arosio P
    J Biol Chem; 2018 Jul; 293(29):11424-11432. PubMed ID: 29853641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible protein aggregation is a protective mechanism to ensure cell cycle restart after stress.
    Saad S; Cereghetti G; Feng Y; Picotti P; Peter M; Dechant R
    Nat Cell Biol; 2017 Oct; 19(10):1202-1213. PubMed ID: 28846094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35.
    Sergeeva AV; Sopova JV; Belashova TA; Siniukova VA; Chirinskaite AV; Galkin AP; Zadorsky SP
    Prion; 2019 Jan; 13(1):21-32. PubMed ID: 30558459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans.
    Avni A; Swasthi HM; Majumdar A; Mukhopadhyay S
    Prog Mol Biol Transl Sci; 2019; 166():109-143. PubMed ID: 31521230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids.
    Chatterjee D; Jacob RS; Ray S; Navalkar A; Singh N; Sengupta S; Gadhe L; Kadu P; Datta D; Paul A; Arunima S; Mehra S; Pindi C; Kumar S; Singru P; Senapati S; Maji SK
    Elife; 2022 Mar; 11():. PubMed ID: 35257659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of yeast to studying amyloid and prion diseases.
    Chernoff YO; Grizel AV; Rubel AA; Zelinsky AA; Chandramowlishwaran P; Chernova TA
    Adv Genet; 2020; 105():293-380. PubMed ID: 32560789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clearance of an amyloid-like translational repressor is governed by 14-3-3 proteins.
    Herod SG; Dyatel A; Hodapp S; Jovanovic M; Berchowitz LE
    Cell Rep; 2022 May; 39(5):110753. PubMed ID: 35508136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly.
    Cereghetti G; Wilson-Zbinden C; Kissling VM; Diether M; Arm A; Yoo H; Piazza I; Saad S; Picotti P; Drummond DA; Sauer U; Dechant R; Peter M
    Nat Cell Biol; 2021 Oct; 23(10):1085-1094. PubMed ID: 34616026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling a Bad Reputation: Changing Perceptions of Amyloids.
    Wang M; Audas TE; Lee S
    Trends Cell Biol; 2017 Jul; 27(7):465-467. PubMed ID: 28359692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian amyloidogenic proteins promote prion nucleation in yeast.
    Chandramowlishwaran P; Sun M; Casey KL; Romanyuk AV; Grizel AV; Sopova JV; Rubel AA; Nussbaum-Krammer C; Vorberg IM; Chernoff YO
    J Biol Chem; 2018 Mar; 293(9):3436-3450. PubMed ID: 29330303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis.
    Berchowitz LE; Kabachinski G; Walker MR; Carlile TM; Gilbert WV; Schwartz TU; Amon A
    Cell; 2015 Oct; 163(2):406-18. PubMed ID: 26411291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reversible liquid drop aggregation controls glucose response in yeast.
    Simpson-Lavy K; Kupiec M
    Curr Genet; 2018 Aug; 64(4):785-788. PubMed ID: 29322248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary conservation of systemic and reversible amyloid aggregation.
    Lacroix E; Pereira L; Yoo B; Coyle KM; Chandhok S; Zapf R; Marijan D; Morin RD; Vlachos S; Harden N; Audas TE
    J Cell Sci; 2021 Nov; 134(22):. PubMed ID: 34704593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins.
    Sheng J; Olrichs NK; Gadella BM; Kaloyanova DV; Helms JB
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates.
    Ilie IM; Caflisch A
    Chem Rev; 2019 Jun; 119(12):6956-6993. PubMed ID: 30973229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide sequences converting polyglutamine into a prion in yeast.
    Odani W; Urata K; Okuda M; Okuma S; Koyama H; Pack CG; Fujiwara K; Nojima T; Kinjo M; Kawai-Noma S; Taguchi H
    FEBS J; 2015 Feb; 282(3):477-90. PubMed ID: 25406629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections.
    Lipke PN; Klotz SA; Dufrene YF; Jackson DN; Garcia-Sherman MC
    Microbiol Mol Biol Rev; 2018 Mar; 82(1):. PubMed ID: 29187516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Aggregation Mechanisms in Amyloids.
    Almeida ZL; Brito RMM
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.