These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 29964029)
1. Rapid method for an enhanced recovery of biologically active human phospholipid scramblase1 from inclusion bodies. Palanirajan SK; Gummadi SN Anal Biochem; 2018 Sep; 556():104-111. PubMed ID: 29964029 [TBL] [Abstract][Full Text] [Related]
2. Recovery of functionally active recombinant human phospholipid scramblase 1 from inclusion bodies using N-lauroyl sarcosine. Francis VG; Majeed MA; Gummadi SN J Ind Microbiol Biotechnol; 2012 Jul; 39(7):1041-8. PubMed ID: 22389205 [TBL] [Abstract][Full Text] [Related]
3. GroES and GroEL are essential chaperones for refolding of recombinant human phospholipid scramblase 1 in E. coli. Sahu SK; Rajasekharan A; Gummadi SN Biotechnol Lett; 2009 Nov; 31(11):1745-52. PubMed ID: 19590828 [TBL] [Abstract][Full Text] [Related]
4. Over-expression of recombinant human phospholipid scramblase 1 in E. coli and its purification from inclusion bodies. Sahu SK; Gopala Krishna A; Gummadi SN Biotechnol Lett; 2008 Dec; 30(12):2131-7. PubMed ID: 18629440 [TBL] [Abstract][Full Text] [Related]
5. Biochemical evidence for lead and mercury induced transbilayer movement of phospholipids mediated by human phospholipid scramblase 1. Shettihalli AK; Gummadi SN Chem Res Toxicol; 2013 Jun; 26(6):918-25. PubMed ID: 23659204 [TBL] [Abstract][Full Text] [Related]
6. Are cysteine residues of human phospholipid scramblase 1 essential for Pb Shettihalli AK; Palanirajan SK; Gummadi SN Eur Biophys J; 2021 Jul; 50(5):745-757. PubMed ID: 33787949 [TBL] [Abstract][Full Text] [Related]
7. N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases. Rayala S; Francis VG; Sivagnanam U; Gummadi SN J Biol Chem; 2014 May; 289(19):13206-18. PubMed ID: 24648509 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of the novel nuclease activity of human phospholipid scramblase 1. Sivagnanam U; Narayana Murthy S; Gummadi SN BMC Biochem; 2016 May; 17(1):10. PubMed ID: 27206388 [TBL] [Abstract][Full Text] [Related]
9. [Influence of the reductase deficient Escherichia coli on the solubility of recombinant proteins produced in it]. Xiong S; Zhang MY; Qian CW; Ran YC; Wang YF; Ren XR; Su KY; Yu ZY Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):686-91. PubMed ID: 15971580 [TBL] [Abstract][Full Text] [Related]
10. Characterization of recombinant pectate lyase refolded from inclusion bodies generated in E. coli BL21(DE3). Kumar S; Jain KK; Singh A; Panda AK; Kuhad RC Protein Expr Purif; 2015 Jun; 110():43-51. PubMed ID: 25497420 [TBL] [Abstract][Full Text] [Related]
11. Heavy-Metals-Mediated Phospholipids Scrambling by Human Phospholipid Scramblase 3: A Probable Role in Mitochondrial Apoptosis. Palanirajan SK; Gummadi SN Chem Res Toxicol; 2020 Feb; 33(2):553-564. PubMed ID: 31769662 [TBL] [Abstract][Full Text] [Related]
12. Expression of Mastoparan B, a Venom Peptide, Via Escherichia coli C43 (DE3) Coupled with an Artificial Oil Body-Cyanogen Bromide Technology Platform. Hsieh SK; Yu YJ; Tang NY; Lin JR; Jinn TR Protein Pept Lett; 2017; 24(11):1021-1029. PubMed ID: 28741464 [TBL] [Abstract][Full Text] [Related]
13. An efficient large-scale refolding technique for recovering biologically active recombinant human FGF-21 from inclusion bodies. Ye X; Yu D; Wu Y; Han J; Li S; Wu Q; Li D; Qi J Int J Biol Macromol; 2019 Aug; 135():362-372. PubMed ID: 31129207 [TBL] [Abstract][Full Text] [Related]
14. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Zhang Z; Kuipers G; Niemiec Ł; Baumgarten T; Slotboom DJ; de Gier JW; Hjelm A Microb Cell Fact; 2015 Sep; 14():142. PubMed ID: 26377812 [TBL] [Abstract][Full Text] [Related]
15. Purification of viral neuraminidase from inclusion bodies produced by recombinant Escherichia coli. Lipničanová S; Chmelová D; Godány A; Ondrejovič M; Miertuš S J Biotechnol; 2020 Jun; 316():27-34. PubMed ID: 32302655 [TBL] [Abstract][Full Text] [Related]
16. Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its "oxidizing" mutant. Xiong S; Wang YF; Ren XR; Li B; Zhang MY; Luo Y; Zhang L; Xie QL; Su KY World J Gastroenterol; 2005 Feb; 11(7):1077-82. PubMed ID: 15742420 [TBL] [Abstract][Full Text] [Related]
17. Recovery of bioactive protein from bacterial inclusion bodies using trifluoroethanol as solubilization agent. Upadhyay V; Singh A; Jha D; Singh A; Panda AK Microb Cell Fact; 2016 Jun; 15():100. PubMed ID: 27277580 [TBL] [Abstract][Full Text] [Related]
18. Production of Active Recombinant Hyaluronidase Inclusion Bodies from Schwaighofer A; Ablasser S; Lux L; Kopp J; Herwig C; Spadiut O; Lendl B; Slouka C Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485932 [TBL] [Abstract][Full Text] [Related]
19. The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity. Francis VG; Mohammed AM; Aradhyam GK; Gummadi SN FEBS J; 2013 Jun; 280(12):2855-69. PubMed ID: 23590222 [TBL] [Abstract][Full Text] [Related]
20. Comparative study to develop a single method for retrieving wide class of recombinant proteins from classical inclusion bodies. Padhiar AA; Chanda W; Joseph TP; Guo X; Liu M; Sha L; Batool S; Gao Y; Zhang W; Huang M; Zhong M Appl Microbiol Biotechnol; 2018 Mar; 102(5):2363-2377. PubMed ID: 29387954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]