BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29964048)

  • 1. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism.
    Knox R; Lento C; Wilson DJ
    J Mol Biol; 2018 Sep; 430(18 Pt B):3311-3322. PubMed ID: 29964048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin.
    Tripathi R; Nair NN
    J Phys Chem B; 2016 Mar; 120(10):2681-90. PubMed ID: 26918257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic Snapshots of Class A β-Lactamase Catalysis Reveal Structural Changes That Facilitate β-Lactam Hydrolysis.
    Pan X; He Y; Lei J; Huang X; Zhao Y
    J Biol Chem; 2017 Mar; 292(10):4022-4033. PubMed ID: 28100776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation.
    Sharma S; Bandyopadhyay P
    J Mol Model; 2012 Feb; 18(2):481-92. PubMed ID: 21541744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis.
    He Y; Lei J; Pan X; Huang X; Zhao Y
    Sci Rep; 2020 Jun; 10(1):10205. PubMed ID: 32576842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of cefotaximase activity in the TEM β-lactamase.
    Singh MK; Dominy BN
    J Mol Biol; 2012 Jan; 415(1):205-20. PubMed ID: 22075446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism.
    Zheng M; Xu D
    J Phys Chem B; 2013 Oct; 117(39):11596-607. PubMed ID: 24025144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step.
    Massova I; Kollman PA
    J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors.
    Salahuddin P; Kumar A; Khan AU
    Curr Protein Pept Sci; 2018; 19(2):130-144. PubMed ID: 28745223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation.
    Minasov G; Wang X; Shoichet BK
    J Am Chem Soc; 2002 May; 124(19):5333-40. PubMed ID: 11996574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of the Ω-Loop in Regulation of the Catalytic Activity of TEM-Type β-Lactamases.
    Egorov A; Rubtsova M; Grigorenko V; Uporov I; Veselovsky A
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31835662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-saturation mutagenesis and three-dimensional modelling of ROB-1 define a substrate binding role of Ser130 in class A beta-lactamases.
    Juteau JM; Billings E; Knox JR; Levesque RC
    Protein Eng; 1992 Oct; 5(7):693-701. PubMed ID: 1480622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel non-β-lactam inhibitor of β-lactamase TEM-171 based on acylated phenoxyaniline.
    Grigorenko VG; Andreeva IP; Rubtsova MY; Deygen IM; Antipin RL; Majouga AG; Egorov AM; Beshnova DA; Kallio J; Hackenberg C; Lamzin VS
    Biochimie; 2017 Jan; 132():45-53. PubMed ID: 27771370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ENDOR structural characterization of a catalytically competent acylenzyme reaction intermediate of wild-type TEM-1 beta-lactamase confirms glutamate-166 as the base catalyst.
    Mustafi D; Sosa-Peinado A; Makinen MW
    Biochemistry; 2001 Feb; 40(8):2397-409. PubMed ID: 11327860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectral kinetic study of acylation and deacylation during the hydrolysis of penicillins and cefotaxime by beta-lactamase TEM-1 and the G238S mutant.
    Saves I; Burlet-Schiltz O; Maveyraud L; Samama JP; Promé JC; Masson JM
    Biochemistry; 1995 Sep; 34(37):11660-7. PubMed ID: 7547898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of class A beta-lactamase. I. The role of Glu166 and Serl30 in the deacylation reaction.
    Hata M; Fujii Y; Ishii M; Hoshino T; Tsuda M
    Chem Pharm Bull (Tokyo); 2000 Apr; 48(4):447-53. PubMed ID: 10783059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of residues critical for catalysis in a class C beta-lactamase by combinatorial scanning mutagenesis.
    Goldberg SD; Iannuccilli W; Nguyen T; Ju J; Cornish VW
    Protein Sci; 2003 Aug; 12(8):1633-45. PubMed ID: 12876313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.