BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29964110)

  • 21. Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb leaves.
    Xu QX; Shi JJ; Zhang JG; Li L; Jiang L; Wei ZJ
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1240-1252. PubMed ID: 27693832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of high yield exopolysaccharide produced by Phyllobacterium sp. 921F exhibiting moisture preserving properties.
    Li Y; Zhang G; Du C; Mou H; Cui J; Guan H; Hwang H; Wang P
    Int J Biol Macromol; 2017 Aug; 101():562-568. PubMed ID: 28322954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and rheological properties of a succinoglycan from Pseudomonas sp. 31260 grown on wood hydrolysates.
    Meade MJ; Tanenbaum SW; Nakas JP
    Can J Microbiol; 1995 Dec; 41(12):1147-52. PubMed ID: 8542556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The potential of extracellular biopolymer production by Mesorhizobium sp. from monosaccharide constituents of lignocellulosic biomass.
    Roesler BCS; Vaz RG; Castellane TCL; de Macedo Lemos EG; Burkert CAV
    Biotechnol Lett; 2021 Jul; 43(7):1385-1394. PubMed ID: 33797656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2.
    Han M; Du C; Xu ZY; Qian H; Zhang WG
    Int J Biol Macromol; 2016 Jul; 88():603-13. PubMed ID: 27090573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis.
    Llamas I; Amjres H; Mata JA; Quesada E; Béjar V
    Molecules; 2012 Jun; 17(6):7103-20. PubMed ID: 22692238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.
    Moretto C; Castellane TC; Lopes EM; Omori WP; Sacco LP; Lemos EG
    Int J Biol Macromol; 2015 Nov; 81():291-8. PubMed ID: 26234581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization.
    Dertli E; Toker OS; Durak MZ; Yilmaz MT; Tatlısu NB; Sagdic O; Cankurt H
    Carbohydr Polym; 2016 Jan; 136():427-40. PubMed ID: 26572373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extraction and characterization of an exopolysaccharide from a marine bacterium.
    Dhanya BE; Prabhu A; Rekha PD
    Int Microbiol; 2022 May; 25(2):285-295. PubMed ID: 34668088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis.
    Mata JA; Béjar V; Llamas I; Arias S; Bressollier P; Tallon R; Urdaci MC; Quesada E
    Res Microbiol; 2006 Nov; 157(9):827-35. PubMed ID: 17005380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate.
    Castellane TCL; Campanharo JC; Colnago LA; Coutinho ID; Lopes ÉM; Lemos MVF; de Macedo Lemos EG
    Int J Biol Macromol; 2017 Mar; 96():361-369. PubMed ID: 28011103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficiency of the EPS emulsifier produced by Ochrobactrum anthropi in different hydrocarbon bioremediation assays.
    Calvo C; Silva-Castro GA; Uad I; García Fandiño C; Laguna J; González-López J
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1493-501. PubMed ID: 18784947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Physicochemical properties of the microbial exopolysaccharide ethapolan synthesized on a mixture of growth substrates].
    Pirog TP; Kovalenko MA; Kuz'minskaia IuV; Votselko SK
    Mikrobiologiia; 2004; 73(1):19-24. PubMed ID: 15074035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1.
    Mohebali G; Kaytash A; Etemadi N
    Colloids Surf B Biointerfaces; 2012 Oct; 98():120-8. PubMed ID: 22698673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676.
    Devi PB; Kavitake D; Shetty PH
    Int J Biol Macromol; 2016 Dec; 93(Pt A):822-828. PubMed ID: 27645923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influences of Ulva fasciata polysaccharide on the rheology and stabilization of cinnamaldehyde emulsions.
    Shao P; Shao J; Jiang Y; Sun P
    Carbohydr Polym; 2016 Jan; 135():27-34. PubMed ID: 26453847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical characterization and potential application of exopolysaccharides produced by Ensifer adhaerens JHT2 as a bioemulsifier of edible oils.
    Alvarez VM; Jurelevicius D; Serrato RV; Barreto-Bergter E; Seldin L
    Int J Biol Macromol; 2018 Jul; 114():18-25. PubMed ID: 29550419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of exopolysaccharides by two strains of Lactobacillus bulgaricus in whey-based media.
    Iliev I; Radoilska E; Ivanova I; Enikova R
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):511-6. PubMed ID: 15954646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications.
    Kielak AM; Castellane TC; Campanharo JC; Colnago LA; Costa OY; Corradi da Silva ML; van Veen JA; Lemos EG; Kuramae EE
    Sci Rep; 2017 Jan; 7():41193. PubMed ID: 28117455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gelling properties of chia seed and flour.
    Coorey R; Tjoe A; Jayasena V
    J Food Sci; 2014 May; 79(5):E859-66. PubMed ID: 24734892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.