BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2996426)

  • 1. Components of purified sarcolemma from porcine skeletal muscle.
    Mickelson JR; Louis CF
    Arch Biochem Biophys; 1985 Oct; 242(1):112-26. PubMed ID: 2996426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle sarcolemma in malignant hyperthermia: evidence for a defect in calcium regulation.
    Mickelson JR; Ross JA; Hyslop RJ; Gallant EM; Louis CF
    Biochim Biophys Acta; 1987 Mar; 897(3):364-76. PubMed ID: 3028485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in activities of calmodulin-mediated enzymes in rat brain during aging.
    Hoskins B; Scott JM
    Mech Ageing Dev; 1984 Aug; 26(2-3):231-9. PubMed ID: 6148468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of skeletal muscle sarcolemmal ATP-dependent calcium transport by calmodulin and cAMP-dependent protein kinase.
    Mickelson JR; Beaudry TM; Louis CF
    Arch Biochem Biophys; 1985 Oct; 242(1):127-36. PubMed ID: 3931553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of thyroxine on the calmodulin-dependent (Ca2+-Mg2+)ATPase activity and protein phosphorylation in rabbit fast skeletal muscle sarcolemma.
    Famulski KS; Pilarska M; Wrzosek A; Sarzała MG
    Eur J Biochem; 1988 Jan; 171(1-2):364-8. PubMed ID: 2962871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of purified bovine cardiac sarcolemma and potassium-stimulated calcium uptake.
    Flockerzi V; Mewes R; Ruth P; Hofmann F
    Eur J Biochem; 1983 Sep; 135(1):131-42. PubMed ID: 6309517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ca2+-calmodulin-dependent phosphorylation and passive transport of Ca2+ in the myocardial sarcolemma].
    Vorobets ZD; Kurskiĭ MD; Marchenko SN
    Biokhimiia; 1984 Aug; 49(8):1268-74. PubMed ID: 6149768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unmasking effect of alamethicin on the (Na+,K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles.
    Jones LR; Maddock SW; Besch HR
    J Biol Chem; 1980 Oct; 255(20):9971-80. PubMed ID: 6253461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. Comparative biochemical analysis of component activities.
    Jones LR; Besch HR; Fleming JW; McConnaughey MM; Watanabe AM
    J Biol Chem; 1979 Jan; 254(2):530-9. PubMed ID: 216677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of low-molecular-weight proteins in preparations of rat heart sarcolemma and sarcoplasmic reticulum.
    Lamers JM; Stinis JT
    Adv Myocardiol; 1982; 3():289-97. PubMed ID: 6302773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Ca2+-calmodulin-stimulated cyclic GMP phosphodiesterase from bovine brain.
    Shenolikar S; Thompson WJ; Strada SJ
    Biochemistry; 1985 Jan; 24(3):672-8. PubMed ID: 2986683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Some properties of the reaction catalyzed by protein kinase bound to cardiac sarcolemma].
    Preobrazhenskiĭ AN; Saks VA
    Biokhimiia; 1981 Sep; 46(9):1681-93. PubMed ID: 6271267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine nucleoside 3'-tetraphosphates are novel and potent inhibitors of adenylyl cyclases.
    Désaubry L; Johnson RA
    J Biol Chem; 1998 Sep; 273(38):24972-7. PubMed ID: 9733805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Ca2+ and calmodulin on cyclic nucleotide metabolism in neurosecretosomes isolated from ox neurohypophyses.
    Dartt DA; Torp-Pedersen C; Thorn NA
    Brain Res; 1981 Jan; 204(1):121-8. PubMed ID: 6113872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium dependent regulation of brain and cardiac muscle adenylate cyclase.
    Potter JD; Piascik MT; Wisler PL; Robertson SP; Johnson CL
    Ann N Y Acad Sci; 1980; 356():220-31. PubMed ID: 6263149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cAMP- and cGMP-dependent protein kinases, and calmodulin on Ca2+ uptake by highly purified sarcolemmal vesicles of vascular smooth muscle.
    Suematsu E; Hirata M; Kuriyama H
    Biochim Biophys Acta; 1984 Jun; 773(1):83-90. PubMed ID: 6329280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential recognition of calmodulin-enzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody.
    Hansen RS; Beavo JA
    J Biol Chem; 1986 Nov; 261(31):14636-45. PubMed ID: 3021748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ca2+-pumping ATPase in skeletal muscle sarcolemma. Calmodulin dependence, regulation by cAMP-dependent phosphorylation, and purification.
    Michalak M; Famulski K; Carafoli E
    J Biol Chem; 1984 Dec; 259(24):15540-7. PubMed ID: 6150938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a calmodulin-dependent high-affinity cyclic AMP and cyclic GMP phosphodiesterase from male mouse germ cells.
    Geremia R; Rossi P; Mocini D; Pezzotti R; Conti M
    Biochem J; 1984 Feb; 217(3):693-700. PubMed ID: 6324744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin-stimulated cyclic nucleotide phosphodiesterases in plasma membranes of bovine epididymal spermatozoa.
    Chaudhry PS; Casillas ER
    Arch Biochem Biophys; 1988 May; 262(2):439-44. PubMed ID: 2835007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.