These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29964351)

  • 1. Biosurfactant-facilitated leaching of metals from spent hydrodesulphurization catalyst.
    Alsaqer S; Marafi M; Banat IM; Ismail W
    J Appl Microbiol; 2018 Nov; 125(5):1358-1369. PubMed ID: 29964351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Biosurfactants-an Ecofriendly Boon to Industries for Green Revolution.
    Sharma P; Sharma N
    Recent Pat Biotechnol; 2020; 14(3):169-183. PubMed ID: 31830890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal leaching from refinery waste hydroprocessing catalyst.
    Marafi M; Rana MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):951-959. PubMed ID: 29775124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial biosurfactants for oil spill remediation: pitfalls and potentials.
    Patel S; Homaei A; Patil S; Daverey A
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):27-37. PubMed ID: 30343430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental applications for biosurfactants.
    Mulligan CN
    Environ Pollut; 2005 Jan; 133(2):183-98. PubMed ID: 15519450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seeking faster, alternative methods for glycolipid biosurfactant characterization and purification.
    Dardouri M; Mendes RM; Frenzel J; Costa J; Ribeiro IAC
    Anal Bioanal Chem; 2021 Jul; 413(16):4311-4320. PubMed ID: 34003328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
    Zhang J; Xue Q; Gao H; Lai H; Wang P
    Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay.
    Sun DD; Tay JH; Qian CE; Lai D
    Water Sci Technol; 2001; 44(10):285-91. PubMed ID: 11794668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal recovery from spent refinery catalysts by means of biotechnological strategies.
    Beolchini F; Fonti V; Ferella F; Vegliò F
    J Hazard Mater; 2010 Jun; 178(1-3):529-34. PubMed ID: 20167424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhamnolipids Application for the Removal of Vanadium from Contaminated Sediment.
    San Martín YB; Toledo León HF; Rodríguez AÁ; Marqués AM; López MIS
    Curr Microbiol; 2021 May; 78(5):1949-1960. PubMed ID: 33811507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosurfactants produced by Serratia species: Classification, biosynthesis, production and application.
    Clements T; Ndlovu T; Khan S; Khan W
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):589-602. PubMed ID: 30456577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide.
    Szymczycha-Madeja A
    J Hazard Mater; 2011 Feb; 186(2-3):2157-61. PubMed ID: 21167639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An environmentally friendly process for the recovery of valuable metals from spent refinery catalysts.
    Rocchetti L; Fonti V; Vegliò F; Beolchini F
    Waste Manag Res; 2013 Jun; 31(6):568-76. PubMed ID: 23393098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production.
    Henkel M; Geissler M; Weggenmann F; Hausmann R
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28544628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes.
    Li Z; Chen M; Zhang Q; Liu X; Saito F
    Waste Manag; 2017 Feb; 60():734-738. PubMed ID: 27422050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial biosurfactants: challenges and opportunities for future exploitation.
    Marchant R; Banat IM
    Trends Biotechnol; 2012 Nov; 30(11):558-65. PubMed ID: 22901730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst.
    Rivas-Castillo AM; Guatemala-Cisneros ME; Gómez-Ramírez M; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):533-540. PubMed ID: 30755080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosurfactants in cosmetics and biopharmaceuticals.
    Varvaresou A; Iakovou K
    Lett Appl Microbiol; 2015 Sep; 61(3):214-23. PubMed ID: 25970073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.