BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29964417)

  • 1. [Temporal and Spatial Distribution of Phosphorus in Paddy Fields Under Cyclic Irrigation of Drainage Water].
    Jiao PJ; Xu D; Zhu JQ; Yu YD
    Huan Jing Ke Xue; 2016 Oct; 37(10):3842-3849. PubMed ID: 29964417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].
    Zhou JW; Su BL; Huang NB; Guan YT; Zhao K
    Huan Jing Ke Xue; 2016 Mar; 37(3):963-9. PubMed ID: 27337888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of irrigation-drainage unit on phosphorus interception in paddy field system.
    Hua L; Zhai L; Liu J; Liu H; Zhang F; Fan X
    J Environ Manage; 2019 Apr; 235():319-327. PubMed ID: 30703646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dynamic characteristics of phosphorus in purple paddy soil and its environmental Impact].
    Li XP; Shi XJ
    Huan Jing Ke Xue; 2008 Feb; 29(2):434-9. PubMed ID: 18613517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices.
    Qi D; Wu Q; Zhu J
    Sci Rep; 2020 Jun; 10(1):9734. PubMed ID: 32546803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields.
    Yu Y; Xu J; Zhang P; Meng Y; Xiong Y
    Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33805028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term impacts of biochar, tillage practices, and irrigation systems on nitrate and phosphorus concentrations in subsurface drainage water.
    Farahani SS; Asoodar MA; Moghadam BK
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):761-771. PubMed ID: 31811608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of water-saving irrigation on the residues and risk of polycyclic aromatic hydrocarbon in paddy field.
    Zhao Z; Xia L; Jiang X; Gao Y
    Sci Total Environ; 2018 Mar; 618():736-745. PubMed ID: 29054619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus losses to water from lowland rice fields under rice-wheat double cropping system in the Tai Lake region.
    Cao ZH; Zhang HC
    Environ Geochem Health; 2004; 26(2-3):229-36. PubMed ID: 15499778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.
    Xiong Y; Peng S; Luo Y; Xu J; Yang S
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4406-17. PubMed ID: 25304242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of irrigation amount and fertilization on agriculture non-point source pollution in the paddy field.
    Wang H; He P; Shen C; Wu Z
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10363-10373. PubMed ID: 30761497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of Spatial Pattern of Paddy Field on the Losses of Nitrogen and Phosphorus in Three Gorges Reservoir Area].
    Chen CL; Gao M; Ni JP; Xie DT; Deng H
    Huan Jing Ke Xue; 2017 May; 38(5):1889-1897. PubMed ID: 29965093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.
    Dittmar J; Voegelin A; Roberts LC; Hug SJ; Saha GC; Ali MA; Badruzzaman AB; Kretzschmar R
    Environ Sci Technol; 2007 Sep; 41(17):5967-72. PubMed ID: 17937268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin.
    Zhang Z; Zhang J; He R; Wang Z; Zhu Y
    Environ Pollut; 2007 Jan; 145(2):425-33. PubMed ID: 16979805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental research on migration characteristics of nitrogen and phosphorus in Qingtongxia irrigation district].
    Li QK; Chen WW; Sun J; Li HE
    Huan Jing Ke Xue; 2010 Sep; 31(9):2048-55. PubMed ID: 21072923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary study of phosphorus runoff and drainage from a paddy field in the Taihu Basin.
    Zuo Q; Lu CA; Zhang WL
    Chemosphere; 2003 Feb; 50(6):689-94. PubMed ID: 12688477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region. I. Effect of phosphate fertilizer rate on P losses from paddy soil.
    Zhang HC; Cao ZH; Shen QR; Wong MH
    Chemosphere; 2003 Feb; 50(6):695-701. PubMed ID: 12688478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil testing to predict phosphorus leaching.
    Maguire RO; Sims JT
    J Environ Qual; 2002; 31(5):1601-9. PubMed ID: 12371177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources and subsurface transport of dissolved reactive phosphorus in a semiarid, no-till catchment with complex topography.
    Ortega-Pieck A; Norby J; Brooks ES; Strawn D; Crump AR; Huggins DR
    J Environ Qual; 2020 Sep; 49(5):1286-1297. PubMed ID: 33016460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and modeling of phosphorous transport in shallow groundwater environments.
    Hendricks GS; Shukla S; Obreza TA; Harris WG
    J Contam Hydrol; 2014 Aug; 164():125-37. PubMed ID: 24981965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.