These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29964464)

  • 1. [Response of
    Wang ZH; Zhang HP; Luo ZX
    Huan Jing Ke Xue; 2016 Jul; 37(7):2570-2576. PubMed ID: 29964464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa.
    Wang Z; Gui H; Luo Z; Zhen Z; Yan C; Xing B
    Environ Pollut; 2019 Sep; 252(Pt B):1755-1763. PubMed ID: 31295694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the conversion of dissolved organic phosphorus favors algal bloom, arsenate biotransformation and microcystins release of Microcystis aeruginosa.
    Zhang X; Wang Z; Luo Z; Chen Y; Huang X
    J Environ Sci (China); 2023 Mar; 125():205-214. PubMed ID: 36375906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of orthophosphate and bioavailability of dissolved organic phosphorous compounds to typically harmful cyanobacterium Microcystis aeruginosa.
    Li J; Wang Z; Cao X; Wang Z; Zheng Z
    Mar Pollut Bull; 2015 Mar; 92(1-2):52-58. PubMed ID: 25627194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes.
    Luo Z; Wang Z; Liu A; Yan Y; Wu Y; Zhang X
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44460-44469. PubMed ID: 32770468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes.
    Guo P; Gong Y; Wang C; Liu X; Liu J
    Environ Toxicol Chem; 2011 Aug; 30(8):1754-9. PubMed ID: 21560143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation mechanism of the Microcystis aeruginosa bloom in the water with low dissolved phosphorus.
    Yuan R; Li J; Li Y; Ren L; Wang S; Kong F
    Mar Pollut Bull; 2019 Nov; 148():194-201. PubMed ID: 31430706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa.
    Zhang Q; Chen Y; Wang M; Zhang J; Chen Q; Liu D
    Water Res; 2021 May; 196():117048. PubMed ID: 33773451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.
    Yan C; Wang Z; Luo Z
    PLoS One; 2014; 9(12):e116099. PubMed ID: 25549253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments.
    Ren L; Wang P; Wang C; Chen J; Hou J; Qian J
    Environ Pollut; 2017 Jan; 220(Pt A):274-285. PubMed ID: 27665120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.
    Liu Y; Chen S; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Oct; 297():83-91. PubMed ID: 25956638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation.
    Ren L; Wang P; Wang C; Paerl HW; Wang H
    Environ Pollut; 2020 Jan; 256():113441. PubMed ID: 31672370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interspecific competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa on different phosphorus substrates.
    Bai F; Shi J; Yang S; Yang Y; Wu Z
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):42264-42275. PubMed ID: 32246417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels.
    Che F; Du M; Yan C
    J Environ Sci (China); 2018 Apr; 66():41-49. PubMed ID: 29628107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential impacts of organic and inorganic phosphorus on the growth and phosphorus utilization of Microcystis aeruginosa.
    Xu W; Zhang J; Yang C; Ai F; Yin Y; Guo H
    Sci Total Environ; 2024 Nov; 951():175392. PubMed ID: 39122037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes.
    Gong Y; Song L; Wu X; Xiao B; Fang T; Liu J
    Environ Toxicol; 2009 Feb; 24(1):87-94. PubMed ID: 18442067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of extracellular and intracellular alkaline phosphatase in Microcystis aeruginosa to organic phosphorus.
    Zhang T; Lu X; Yu R; Qin M; Wei C; Hong S
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):42304-42312. PubMed ID: 32577973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting effects of ferric ions on Microcystis aeruginosa growth and arsenate accumulation and reduction at different phosphorus environments.
    Wang Z; Zeng L; Luo Z; Wang Y; Hao C
    Environ Pollut; 2024 Dec; 362():124977. PubMed ID: 39293657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress.
    Xie S; Liu J; Yang F; Feng H; Wei C; Wu F
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19413-19422. PubMed ID: 29728971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated nano-α-Fe
    Luo Y; Zheng J; Ren Q; Wang Z; Huang F; Liu Z; Luo Z
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):87659-87668. PubMed ID: 37430079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.