BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29964691)

  • 1. [Evaluating Biochar-Water Sorption Coefficients of Pharmaceutically Active Compounds by Using a Linear Free Energy Relationship].
    Wang JY; Bi EP
    Huan Jing Ke Xue; 2016 Nov; 37(11):4349-4356. PubMed ID: 29964691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating activated carbon-water sorption coefficients of organic compounds using a linear solvation energy relationship approach and sorbate chemical activities.
    Shih YH; Gschwend PM
    Environ Sci Technol; 2009 Feb; 43(3):851-7. PubMed ID: 19245026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm.
    Dalahmeh S; Ahrens L; Gros M; Wiberg K; Pell M
    Sci Total Environ; 2018 Jan; 612():192-201. PubMed ID: 28850838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanism of Cr( VI) removal from aqueous solution using biochar promoted by humic acid].
    Ding WC; Tian XM; Wang DY; Zeng XL; Xu Q; Chen JK; Ai XY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3847-53. PubMed ID: 23323415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of tetracycline on H
    Chen T; Luo L; Deng S; Shi G; Zhang S; Zhang Y; Deng O; Wang L; Zhang J; Wei L
    Bioresour Technol; 2018 Nov; 267():431-437. PubMed ID: 30032057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution.
    Chen C; Zhou W; Lin D
    Bioresour Technol; 2015 Mar; 179():359-366. PubMed ID: 25553566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Hazard Mater; 2006 Jan; 128(1):44-52. PubMed ID: 16126338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction mechanisms of organic contaminants with burned straw ash charcoal.
    Huang W; Chen B
    J Environ Sci (China); 2010; 22(10):1586-94. PubMed ID: 21235190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyparameter linear free energy relationship for wood char-water sorption coefficients of organic sorbates.
    Plata DL; Hemingway JD; Gschwend PM
    Environ Toxicol Chem; 2015 Jul; 34(7):1464-71. PubMed ID: 25708318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.
    Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical-chemical interactions between pharmaceuticals and biochar in synthetic and real urine.
    Solanki A; Boyer TH
    Chemosphere; 2019 Mar; 218():818-826. PubMed ID: 30508800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption properties of greenwaste biochar for two triazine pesticides.
    Zheng W; Guo M; Chow T; Bennett DN; Rajagopalan N
    J Hazard Mater; 2010 Sep; 181(1-3):121-6. PubMed ID: 20510513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar.
    Rajapaksha AU; Vithanage M; Ahmad M; Seo DC; Cho JS; Lee SE; Lee SS; Ok YS
    J Hazard Mater; 2015 Jun; 290():43-50. PubMed ID: 25734533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution.
    Ma Y; Liu WJ; Zhang N; Li YS; Jiang H; Sheng GP
    Bioresour Technol; 2014 Oct; 169():403-408. PubMed ID: 25069094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar.
    Taheran M; Naghdi M; Brar SK; Knystautas EJ; Verma M; Ramirez AA; Surampalli RY; Valero JR
    Sci Total Environ; 2016 Nov; 571():772-7. PubMed ID: 27422726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.
    Usman AR; Ahmad M; El-Mahrouky M; Al-Omran A; Ok YS; Sallam ASh; El-Naggar AH; Al-Wabel MI
    Environ Geochem Health; 2016 Apr; 38(2):511-21. PubMed ID: 26100325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of a novel magnetic biochar for arsenic removal.
    Zhang M; Gao B; Varnoosfaderani S; Hebard A; Yao Y; Inyang M
    Bioresour Technol; 2013 Feb; 130():457-62. PubMed ID: 23313693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the effect of the intrinsic chemical properties of pharmaceutically active compounds (PhACs) on sorption behaviour in soils and goethite.
    Filep T; Szabó L; Kondor AC; Jakab G; Szalai Z
    Ecotoxicol Environ Saf; 2021 Jun; 215():112120. PubMed ID: 33721665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling.
    Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T
    Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.