BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2996489)

  • 1. On the role of the membrane proton conductance in the relationship between rate of respiration and protonmotive force.
    Ghazi A
    Biochem J; 1985 Aug; 229(3):833-7. PubMed ID: 2996489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between the rate of respiration and the protonmotive force. The role of proton conductivity.
    O'Shea PS; Chappell JB
    Biochem J; 1984 Apr; 219(2):401-4. PubMed ID: 6331387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depolarization of in situ mitochondria by hydrogen peroxide in nerve terminals.
    Chinopoulos C; Adam-Vizi V
    Ann N Y Acad Sci; 1999; 893():269-72. PubMed ID: 10672246
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory.
    Hafner RP; Brown GC; Brand MD
    Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carboxyatractylate on transmembrane electrical potential of plant mitochondria in different metabolic states.
    Macri F; Vianello A; Petrussa E; Mokhova E
    Biochem Mol Biol Int; 1994 Sep; 34(2):217-24. PubMed ID: 7849631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ.
    Vercesi AE; Bernardes CF; Hoffmann ME; Gadelha FR; Docampo R
    J Biol Chem; 1991 Aug; 266(22):14431-4. PubMed ID: 1860850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status.
    Hafner RP; Nobes CD; McGown AD; Brand MD
    Eur J Biochem; 1988 Dec; 178(2):511-8. PubMed ID: 2850181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches.
    Samartsev VN; Semenova AA; Dubinin MV
    Cell Biochem Biophys; 2020 Jun; 78(2):203-216. PubMed ID: 32367259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP synthesis driven by a protonmotive force in Streptococcus lactis.
    Maloney PC; Wilson TH
    J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of flow cytometry as a tool to study mitochondrial membrane potential in isolated, living hepatocytes.
    Salvioli S; Maseroli R; Pazienza TL; Bobyleva V; Cossarizza A
    Biochemistry (Mosc); 1998 Feb; 63(2):235-8. PubMed ID: 9526120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry.
    Kalbácová M; Vrbacký M; Drahota Z; Melková Z
    Cytometry A; 2003 Apr; 52(2):110-6. PubMed ID: 12655654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton electrochemical gradient and rate of controlled respiration in mitochondria.
    Azzone GF; Pozzan T; Massari S; Bragadin M
    Biochim Biophys Acta; 1978 Feb; 501(2):296-306. PubMed ID: 620017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency.
    Cardoso CM; Custódio JB; Almeida LM; Moreno AJ
    Toxicol Appl Pharmacol; 2001 Nov; 176(3):145-52. PubMed ID: 11714246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions.
    Videira RA; Antunes-Madeira MC; Madeira VM
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):209-16. PubMed ID: 11559019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain.
    Brand MD; Hafner RP; Brown GC
    Biochem J; 1988 Oct; 255(2):535-9. PubMed ID: 2849419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex.
    Brown GC; Brand MD
    Biochem J; 1985 Jan; 225(2):399-405. PubMed ID: 2983670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Respiration in Isolated Murine Brain Mitochondria: Implications for Mechanistic Stroke Studies.
    Sperling JA; Sakamuri SSVP; Albuck AL; Sure VN; Evans WR; Peterson NR; Rutkai I; Mostany R; Satou R; Katakam PVG
    Neuromolecular Med; 2019 Dec; 21(4):493-504. PubMed ID: 31172441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.