BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29965028)

  • 1. [Particle Size Distribution and Diffusion for Simulated Cooking Fume].
    Li SD; Xu JB; Mo SP; Li WH; Gao JJ; Cao YQ; Chen YF
    Huan Jing Ke Xue; 2017 Jan; 38(1):33-40. PubMed ID: 29965028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis on oil fume particles in catering industry cooking emission].
    Tan DS; Kuang YC; Liu X; Dai FH
    Huan Jing Ke Xue; 2012 Jun; 33(6):1958-63. PubMed ID: 22946182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen.
    Li S; Gao J; He Y; Cao L; Li A; Mo S; Chen Y; Cao Y
    J Environ Sci (China); 2017 Jan; 51():157-164. PubMed ID: 28115126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI).
    Kero I; Naess MK; Tranell G
    J Occup Environ Hyg; 2015; 12(1):37-44. PubMed ID: 25380385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of cooking-generated PM
    Kang K; Kim H; Kim DD; Lee YG; Kim T
    Sci Total Environ; 2019 Jun; 668():56-66. PubMed ID: 30852226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of particulate matter concentrations according to cooking activity in a residential environment.
    Kong HK; Yoon DK; Lee HW; Lee CM
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):2443-2456. PubMed ID: 32888146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization particulate matter from several Chinese cooking dishes and implications in health effects.
    Wang L; Zheng X; Stevanovic S; Wu X; Xiang Z; Yu M; Liu J
    J Environ Sci (China); 2018 Oct; 72():98-106. PubMed ID: 30244755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine and ultrafine particle exposures on 73 trips by car to 65 non-smoking restaurants in the San Francisco Bay Area.
    Ott WR; Wallace LA; McAteer JM; Hildemann LM
    Indoor Air; 2017 Jan; 27(1):205-217. PubMed ID: 26895613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.
    Niu X; Guinot B; Cao J; Xu H; Sun J
    Environ Geochem Health; 2015 Oct; 37(5):801-12. PubMed ID: 25503684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of flow characteristics on ultrafine particle emissions from range hoods.
    Tseng LC; Chen CC
    Ann Occup Hyg; 2013 Aug; 57(7):920-33. PubMed ID: 23479025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures.
    Patel S; Sankhyan S; Boedicker EK; DeCarlo PF; Farmer DK; Goldstein AH; Katz EF; Nazaroff WW; Tian Y; Vanhanen J; Vance ME
    Environ Sci Technol; 2020 Jun; 54(12):7107-7116. PubMed ID: 32391692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PM2.5 and ultrafine particles emitted during heating of commercial cooking oils.
    Torkmahalleh MA; Goldasteh I; Zhao Y; Udochu NM; Rossner A; Hopke PK; Ferro AR
    Indoor Air; 2012 Dec; 22(6):483-91. PubMed ID: 22486983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emission and capture characteristics of Chinese cooking-related fine particles.
    Chen W; Xiao Y; Liu J; Dai X
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):112988-113001. PubMed ID: 37847366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoor-outdoor association of particulate matter and bounded elemental composition within coarse, quasi-accumulation and quasi-ultrafine ranges in residential areas of northern India.
    Rohra H; Tiwari R; Khare P; Taneja A
    Sci Total Environ; 2018 Aug; 631-632():1383-1397. PubMed ID: 29727962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Primary research on indoor air concentration of particulate matter in residential house and its relationship with ambient pollution level].
    Zhang Y; Li XY; Jiang LJ; Wei JR; Sheng X; Liu Y; Guo X
    Wei Sheng Yan Jiu; 2005 Jul; 34(4):407-9. PubMed ID: 16229259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle characterization in retail environments: concentrations, sources, and removal mechanisms.
    Zaatari M; Siegel J
    Indoor Air; 2014 Aug; 24(4):350-61. PubMed ID: 24354962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chef operation on oil fume particle collection of household range hood.
    Chen R; You XY
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):23824-23836. PubMed ID: 32301079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor air quality for poor families: new evidence from Bangladesh.
    Dasgupta S; Huq M; Khaliquzzaman M; Pandey K; Wheeler D
    Indoor Air; 2006 Dec; 16(6):426-44. PubMed ID: 17100664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.