These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29965738)

  • 41. N
    Jiang H; Ryde U
    Dalton Trans; 2023 Jul; 52(26):9104-9120. PubMed ID: 37338432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Duplication and extension of the Thorneley and Lowe kinetic model for Klebsiella pneumoniae nitrogenase catalysis using a MATHEMATICA software platform.
    Wilson PE; Nyborg AC; Watt GD
    Biophys Chem; 2001 Jul; 91(3):281-304. PubMed ID: 11551440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the Catalytic Relevance of the CO-Bound States of V-Nitrogenase.
    Lee CC; Wilcoxen J; Hiller CJ; Britt RD; Hu Y
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3411-3414. PubMed ID: 29409145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii.
    Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK
    Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase.
    Hickey DP; Cai R; Yang ZY; Grunau K; Einsle O; Seefeldt LC; Minteer SD
    J Am Chem Soc; 2019 Oct; 141(43):17150-17157. PubMed ID: 31577428
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution.
    Clarke TA; Maritano S; Eady RR
    Biochemistry; 2000 Sep; 39(37):11434-40. PubMed ID: 10985789
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A model for dinitrogen binding in the E
    Thorhallsson AT; Benediktsson B; Bjornsson R
    Chem Sci; 2019 Dec; 10(48):11110-11124. PubMed ID: 32206260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CO Binding to the FeV Cofactor of CO-Reducing Vanadium Nitrogenase at Atomic Resolution.
    Rohde M; Grunau K; Einsle O
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23626-23630. PubMed ID: 32915491
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The pathway for serial proton supply to the active site of nitrogenase: enhanced density functional modeling of the Grotthuss mechanism.
    Dance I
    Dalton Trans; 2015 Nov; 44(41):18167-86. PubMed ID: 26419970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction.
    Dilworth MJ; Eldridge ME; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. H
    Jiang H; Ryde U
    Phys Chem Chem Phys; 2024 Jan; 26(2):1364-1375. PubMed ID: 38108422
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Is there computational support for an unprotonated carbon in the E
    Siegbahn PEM
    J Comput Chem; 2018 May; 39(12):743-747. PubMed ID: 29265384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase.
    Lee CC; Fay AW; Weng TC; Krest CM; Hedman B; Hodgson KO; Hu Y; Ribbe MW
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13845-9. PubMed ID: 26515097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase.
    Miller RW; Eady RR
    Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Misconception of reductive elimination of H2, in the context of the mechanism of nitrogenase.
    Dance I
    Dalton Trans; 2015 May; 44(19):9027-37. PubMed ID: 25891439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New insights into the reaction capabilities of His
    Dance I
    J Inorg Biochem; 2017 Apr; 169():32-43. PubMed ID: 28104568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biosynthesis of the Metalloclusters of Nitrogenases.
    Hu Y; Ribbe MW
    Annu Rev Biochem; 2016 Jun; 85():455-83. PubMed ID: 26844394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and mechanism of catalytic action of active sites of nitrogenase.
    Likhtenshtein GI; Gvozdev RI; Levchenko LA; Syrtsova LA
    Biol Bull Acad Sci USSR; 1978; 5(2):125-42. PubMed ID: 154348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench (57)Fe Mössbauer Data, and a Hydride Resting State.
    Del Castillo TJ; Thompson NB; Peters JC
    J Am Chem Soc; 2016 Apr; 138(16):5341-50. PubMed ID: 27026402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.