BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 29965747)

  • 21. Mechanistic study on the reaction of a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy.
    Yokoyama K; Ohmori D; Kudo F; Eguchi T
    Biochemistry; 2008 Aug; 47(34):8950-60. PubMed ID: 18672902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tryptophan Lyase (NosL): A Cornucopia of 5'-Deoxyadenosyl Radical Mediated Transformations.
    Bhandari DM; Fedoseyenko D; Begley TP
    J Am Chem Soc; 2016 Dec; 138(50):16184-16187. PubMed ID: 27998091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.
    Dong M; Horitani M; Dzikovski B; Freed JH; Ealick SE; Hoffman BM; Lin H
    J Am Chem Soc; 2017 Apr; 139(16):5680-5683. PubMed ID: 28383907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides.
    Grove TL; Himes PM; Hwang S; Yumerefendi H; Bonanno JB; Kuhlman B; Almo SC; Bowers AA
    J Am Chem Soc; 2017 Aug; 139(34):11734-11744. PubMed ID: 28704043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Ω Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover.
    Pagnier A; Yang H; Jodts RJ; James CD; Shepard EM; Impano S; Broderick WE; Hoffman BM; Broderick JB
    J Am Chem Soc; 2020 Oct; 142(43):18652-18660. PubMed ID: 32966073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Radical Intermediate in Bacillus subtilis QueE during Turnover with the Substrate Analogue 6-Carboxypterin.
    Wilcoxen J; Bruender NA; Bandarian V; Britt RD
    J Am Chem Soc; 2018 Feb; 140(5):1753-1759. PubMed ID: 29303575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural studies of the interaction of S-adenosylmethionine with the [4Fe-4S] clusters in biotin synthase and pyruvate formate-lyase activating enzyme.
    Cosper MM; Cosper NJ; Hong W; Shokes JE; Broderick WE; Broderick JB; Johnson MK; Scott RA
    Protein Sci; 2003 Jul; 12(7):1573-7. PubMed ID: 12824504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases.
    Brimberry MA; Mathew L; Lanzilotta W
    J Inorg Biochem; 2022 Jan; 226():111636. PubMed ID: 34717253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A.
    Flühe L; Knappe TA; Gattner MJ; Schäfer A; Burghaus O; Linne U; Marahiel MA
    Nat Chem Biol; 2012 Feb; 8(4):350-7. PubMed ID: 22366720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A; Lien Y; Mendauletova A; Ngendahimana T; Novitskiy IM; Eaton SS; Latham JA
    J Biol Chem; 2022 May; 298(5):101881. PubMed ID: 35367210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radical SAM activation of the B12-independent glycerol dehydratase results in formation of 5'-deoxy-5'-(methylthio)adenosine and not 5'-deoxyadenosine.
    Demick JM; Lanzilotta WN
    Biochemistry; 2011 Feb; 50(4):440-2. PubMed ID: 21182298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases.
    Lien Y; Lachowicz JC; Mendauletova A; Zizola C; Ngendahimana T; Kostenko A; Eaton SS; Latham JA; Grove TL
    ACS Chem Biol; 2024 Feb; 19(2):370-379. PubMed ID: 38295270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermolecular electron transfer in radical SAM enzymes as a new paradigm for reductive activation.
    Eastman KAS; Jochimsen AS; Bandarian V
    J Biol Chem; 2023 Sep; 299(9):105058. PubMed ID: 37460016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Promiscuous rSAM Enzyme Enables Diverse Peptide Cross-linking.
    Eastman KAS; Mifflin MC; Oblad PF; Roberts AG; Bandarian V
    ACS Bio Med Chem Au; 2023 Dec; 3(6):480-493. PubMed ID: 38144258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an
    Yang H; Impano S; Shepard EM; James CD; Broderick WE; Broderick JB; Hoffman BM
    J Am Chem Soc; 2019 Oct; 141(40):16117-16124. PubMed ID: 31509404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products.
    Lewis JK; Jochimsen AS; Lefave SJ; Young AP; Kincannon WM; Roberts AG; Kieber-Emmons MT; Bandarian V
    Biochemistry; 2021 Nov; 60(45):3347-3361. PubMed ID: 34730336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for Expression, Purification, and Characterization of PqqE, a Radical SAM Enzyme in the PQQ Biosynthetic Pathway.
    Zhu W; Martins AM; Klinman JP
    Methods Enzymol; 2018; 606():389-420. PubMed ID: 30097100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of adenosyl radical from S-adenosylmethionine (SAM) in biotin synthase.
    Kamachi T; Kouno T; Doitomi K; Yoshizawa K
    J Inorg Biochem; 2011 Jun; 105(6):850-7. PubMed ID: 21497584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cofactor dependence of reduction potentials for [4Fe-4S]2+/1+ in lysine 2,3-aminomutase.
    Hinckley GT; Frey PA
    Biochemistry; 2006 Mar; 45(10):3219-25. PubMed ID: 16519516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.