BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2996591)

  • 1. Role of superoxide in the N-oxidation of N-(2-methyl-1-phenyl-2-propyl)hydroxylamine by the rat liver cytochrome P-450 system.
    Duncan JD; Di Stefano EW; Miwa GT; Cho AK
    Biochemistry; 1985 Jul; 24(15):4155-61. PubMed ID: 2996591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of oxidation of N-hydroxyphentermine by superoxide.
    Fukuto JM; Di Stefano EW; Burstyn JN; Valentine JS; Cho AK
    Biochemistry; 1985 Jul; 24(15):4161-7. PubMed ID: 2996592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-oxidation of phentermine to N-hydroxyphentermine by a reconstituted cytochrome P-450 oxidase system from rabbit liver.
    Duncan JD; Cho AK
    Mol Pharmacol; 1982 Sep; 22(2):235-8. PubMed ID: 6815477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of N-hydroxyphentermine to 2-methyl-2-nitro-1-phenylpropane by liver microsomes.
    Maynard MS; Cho AK
    Biochem Pharmacol; 1981 May; 30(10):1115-9. PubMed ID: 6894858
    [No Abstract]   [Full Text] [Related]  

  • 5. The metabolism of N-hydroxyphentermine by rat liver microsomes.
    Sum CY; Cho AK
    Drug Metab Dispos; 1979; 7(2):65-9. PubMed ID: 38075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cytosolic superoxide dismutase as a stimulator in anthranilamide hydroxylation by a microsomal monooxygenase system in rat liver.
    Ohta Y; Ishiguro I; Naito J; Shinohara R
    J Biochem; 1984 Nov; 96(5):1323-36. PubMed ID: 6441802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of 7-alkoxyresorufins by NADPH-cytochrome P450 reductase and its differential effects on their O-dealkylation by rat liver microsomal cytochrome P450.
    Dutton DR; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):617-29. PubMed ID: 2536534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microsomal N-oxidation of phentermine.
    Beckett AH; BĂ©langer PM
    J Pharm Pharmacol; 1976 Sep; 28(9):692-9. PubMed ID: 10392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of microsomal enzyme systems that reduce N-hydroxyphentermine.
    Sum CY; Cho AK
    Drug Metab Dispos; 1976; 4(5):436-41. PubMed ID: 10142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respective role of superoxide and hydroxyl radical in the activity of the reconstituted microsomal ethanol-oxidizing system.
    Ohnishi K; Lieber CS
    Arch Biochem Biophys; 1978 Dec; 191(2):798-803. PubMed ID: 217312
    [No Abstract]   [Full Text] [Related]  

  • 12. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation.
    Morehouse LA; Thomas CE; Aust SD
    Arch Biochem Biophys; 1984 Jul; 232(1):366-77. PubMed ID: 6331320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of superoxide dismutase on hydroxylase activity and hydrogen peroxide formation in anthranilamide hydroxylation by a rat liver microsomal monooxygenase system.
    Ohta Y; Ishiguro I; Naito J; Shinohara R
    Biochem Int; 1984 May; 8(5):617-27. PubMed ID: 6477624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunochemical detection and quantitation of microsomal cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate:cytochrome P-450 reductase in the rat ventral prostate.
    Haaparanta T; Halpert J; Glaumann H; Gustafsson JA
    Cancer Res; 1983 Nov; 43(11):5131-7. PubMed ID: 6413054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats.
    Jeffery EH; Mannering GJ
    Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of cytochrome P-450-dependent oxidation of ethanol in reconstituted membrane vesicles.
    Ingelman-Sundberg M; Johansson I
    J Biol Chem; 1981 Jun; 256(12):6321-6. PubMed ID: 6787051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP
    Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cytochrome P450 in the oxidation of glycerol by reconstituted systems and microsomes.
    Clejan LA; Cederbaum AI
    FASEB J; 1992 Jan; 6(2):765-70. PubMed ID: 1537467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for two ethanol oxidizing pathways in reconstituted mixed-function oxidase systems.
    Winston GW; Cederbaum AI
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():189-94. PubMed ID: 6314373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 dependent N-hydroxylation of a guanidine (debrisoquine), microsomal catalysed reduction and further oxidation of the N-hydroxy-guanidine metabolite to the urea derivative. Similarity with the oxidation of arginine to citrulline and nitric oxide.
    Clement B; Schultze-Mosgau MH; Wohlers H
    Biochem Pharmacol; 1993 Dec; 46(12):2249-67. PubMed ID: 8274159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.