These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 29966023)
21. Strain-specific morphological response of the dominant calcifying phytoplankton species Emiliania huxleyi to salinity change. Gebühr C; Sheward RM; Herrle JO; Bollmann J PLoS One; 2021; 16(2):e0246745. PubMed ID: 33571269 [TBL] [Abstract][Full Text] [Related]
22. Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment. Highfield A; Joint I; Gilbert JA; Crawfurd KJ; Schroeder DC Viruses; 2017 Mar; 9(3):. PubMed ID: 28282890 [TBL] [Abstract][Full Text] [Related]
23. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Schlüter L; Lohbeck KT; Gröger JP; Riebesell U; Reusch TB Sci Adv; 2016 Jul; 2(7):e1501660. PubMed ID: 27419227 [TBL] [Abstract][Full Text] [Related]
24. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay. Smith HE; Tyrrell T; Charalampopoulou A; Dumousseaud C; Legge OJ; Birchenough S; Pettit LR; Garley R; Hartman SE; Hartman MC; Sagoo N; Daniels CJ; Achterberg EP; Hydes DJ Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8845-9. PubMed ID: 22615387 [TBL] [Abstract][Full Text] [Related]
25. Spatial distribution and mobility of organic carbon (POC and DOC) in a coastal Mediterranean environment (Saronikos Gulf, Greece) during 2007-2009 period. Evangeliou N; Florou H Environ Sci Pollut Res Int; 2013 Aug; 20(8):5708-21. PubMed ID: 23463282 [TBL] [Abstract][Full Text] [Related]
26. Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations. Lohbeck KT; Riebesell U; Collins S; Reusch TB Evolution; 2013 Jul; 67(7):1892-900. PubMed ID: 23815647 [TBL] [Abstract][Full Text] [Related]
27. Achieving superior carbon transfer efficiency and pH control using membrane carbonation with a wide range of CO Lai YS; Eustance E; Shesh T; Frias Z; Rittmann BE Sci Total Environ; 2022 May; 822():153592. PubMed ID: 35122858 [TBL] [Abstract][Full Text] [Related]
28. Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi. Heidenreich E; Wördenweber R; Kirschhöfer F; Nusser M; Friedrich F; Fahl K; Kruse O; Rost B; Franzreb M; Brenner-Weiß G; Rokitta S PLoS One; 2019; 14(7):e0218564. PubMed ID: 31291290 [TBL] [Abstract][Full Text] [Related]
29. Inter- and intraspecific phenotypic plasticity of three phytoplankton species in response to ocean acidification. Hattich GS; Listmann L; Raab J; Ozod-Seradj D; Reusch TB; Matthiessen B Biol Lett; 2017 Feb; 13(2):. PubMed ID: 28148833 [TBL] [Abstract][Full Text] [Related]
30. Comparison of Mediterranean Pteropod Shell Biometrics and Ultrastructure from Historical (1910 and 1921) and Present Day (2012) Samples Provides Baseline for Monitoring Effects of Global Change. Howes EL; Eagle RA; Gattuso JP; Bijma J PLoS One; 2017; 12(1):e0167891. PubMed ID: 28125590 [TBL] [Abstract][Full Text] [Related]
31. Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Gallego R; Jacobs-Palmer E; Cribari K; Kelly RP Proc Biol Sci; 2020 Dec; 287(1940):20202424. PubMed ID: 33290686 [TBL] [Abstract][Full Text] [Related]
32. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi. Holtz LM; Wolf-Gladrow D; Thoms S J Theor Biol; 2015 Jan; 364():305-15. PubMed ID: 25225029 [TBL] [Abstract][Full Text] [Related]
33. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. Müller MN; Trull TW; Hallegraeff GM ISME J; 2017 Aug; 11(8):1777-1787. PubMed ID: 28430186 [TBL] [Abstract][Full Text] [Related]
34. A synergetic biomineralization strategy for immobilizing strontium during calcification of the coccolithophore Emiliania huxleyi. Sun S; Liu M; Nie X; Dong F; Hu W; Tan D; Huo T Environ Sci Pollut Res Int; 2018 Aug; 25(23):22446-22454. PubMed ID: 29368204 [TBL] [Abstract][Full Text] [Related]
35. Interactive effects of increased temperature, elevated pCO2 and different nitrogen sources on the coccolithophore Gephyrocapsaoceanica. Niu C; Du G; Li R; Wang C PLoS One; 2020; 15(7):e0235755. PubMed ID: 32649709 [TBL] [Abstract][Full Text] [Related]
36. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Jin P; Gao K; Beardall J Evolution; 2013 Jul; 67(7):1869-78. PubMed ID: 23815645 [TBL] [Abstract][Full Text] [Related]
37. The role of coccolithophore calcification in bioengineering their environment. Flynn KJ; Clark DR; Wheeler G Proc Biol Sci; 2016 Jun; 283(1833):. PubMed ID: 27358373 [TBL] [Abstract][Full Text] [Related]
38. Phenotypic Variability in the Coccolithophore Emiliania huxleyi. Blanco-Ameijeiras S; Lebrato M; Stoll HM; Iglesias-Rodriguez D; Müller MN; Méndez-Vicente A; Oschlies A PLoS One; 2016; 11(6):e0157697. PubMed ID: 27348427 [TBL] [Abstract][Full Text] [Related]
39. Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Moheimani NR; Borowitzka MA Appl Microbiol Biotechnol; 2011 May; 90(4):1399-407. PubMed ID: 21369804 [TBL] [Abstract][Full Text] [Related]
40. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Isensee K; Erez J; Stoll HM Physiol Plant; 2014 Feb; 150(2):321-38. PubMed ID: 23992373 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]