BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29966039)

  • 21. Multiple growth of graphene from a pre-dissolved carbon source.
    Fazi A; Nylander A; Zehri A; Sun J; Malmberg P; Ye L; Liu J; Fu Y
    Nanotechnology; 2020 Aug; 31(34):345601. PubMed ID: 32369782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical Vapor Deposition of Bernal-Stacked Graphene on a Cu Surface by Breaking the Carbon Solubility Symmetry in Cu Foils.
    Yoo MS; Lee HC; Lee S; Lee SB; Lee NS; Cho K
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28635145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of CVD-graphene on rapidly heated copper foils.
    Kim SM; Kim JH; Kim KS; Hwangbo Y; Yoon JH; Lee EK; Ryu J; Lee HJ; Cho S; Lee SM
    Nanoscale; 2014 May; 6(9):4728-34. PubMed ID: 24658264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing copper assisted graphene growth in nanoscale.
    Rosmi MS; Yusop MZ; Kalita G; Yaakob Y; Takahashi C; Tanemura M
    Sci Rep; 2014 Dec; 4():7563. PubMed ID: 25523645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating.
    Huh JH; Kim SH; Chu JH; Kim SY; Kim JH; Kwon SY
    Nanoscale; 2014 Apr; 6(8):4379-86. PubMed ID: 24632835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration.
    Chang SJ; Hyun MS; Myung S; Kang MA; Yoo JH; Lee KG; Choi BG; Cho Y; Lee G; Park TJ
    Sci Rep; 2016 Mar; 6():22653. PubMed ID: 26961409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-Containing Carbon Feedstock for Growing Superclean Graphene.
    Jia K; Zhang J; Lin L; Li Z; Gao J; Sun L; Xue R; Li J; Kang N; Luo Z; Rummeli MH; Peng H; Liu Z
    J Am Chem Soc; 2019 May; 141(19):7670-7674. PubMed ID: 31058498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface.
    Zhang X; Wang L; Xin J; Yakobson BI; Ding F
    J Am Chem Soc; 2014 Feb; 136(8):3040-7. PubMed ID: 24499486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition.
    Li X; Colombo L; Ruoff RS
    Adv Mater; 2016 Aug; 28(29):6247-52. PubMed ID: 26991960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.
    Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S
    ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.
    Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D
    Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene.
    Niu T; Zhou M; Zhang J; Feng Y; Chen W
    J Am Chem Soc; 2013 Jun; 135(22):8409-14. PubMed ID: 23675983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene-Subgrain-Defined Oxidation of Copper.
    Luo B; Koleini M; Whelan PR; Shivayogimath A; Brandbyge M; Bøggild P; Booth TJ
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48518-48524. PubMed ID: 31797664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces.
    Deng B; Wu J; Zhang S; Qi Y; Zheng L; Yang H; Tang J; Tong L; Zhang J; Liu Z; Peng H
    Small; 2018 May; 14(22):e1800725. PubMed ID: 29717818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-Induced in Situ Growth of Monolayer and Bilayer 2D SiC Crystals Toward High-Temperature Electronics.
    Geng D; Hu J; Fu W; Ang LK; Yang HY
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39109-39115. PubMed ID: 31573176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth mechanism of graphene on graphene films grown by chemical vapor deposition.
    Kang C; Jung DH; Lee JS
    Chem Asian J; 2015 Mar; 10(3):637-41. PubMed ID: 25655906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can a Procedure for the Growth of Single-layer Graphene on Copper be used in Different Chemical Vapor Deposition Reactors?
    Hakami M; Deokar G; Smajic J; Batra NM; Costa PMFJ
    Chem Asian J; 2021 Jun; 16(11):1466-1474. PubMed ID: 33848403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene.
    Burton OJ; Massabuau FC; Veigang-Radulescu VP; Brennan B; Pollard AJ; Hofmann S
    ACS Nano; 2020 Oct; 14(10):13593-13601. PubMed ID: 33001624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.