These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29966378)

  • 41. Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber.
    Luo X; Zhai X; Wang L; Lin Q
    Opt Express; 2018 Apr; 26(9):11658-11666. PubMed ID: 29716084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability.
    Zou Y; Zhou S; Li J; Chen S; Chen Z
    Nanomaterials (Basel); 2024 Aug; 14(15):. PubMed ID: 39120421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies.
    Hu D; Wang H; Tang Z; Zhang X
    Appl Opt; 2016 Jul; 55(19):5257-62. PubMed ID: 27409218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultra-broadband near-perfect metamaterial absorber for photovoltaic applications.
    Nakti PP; Sarker D; Tahmid MI; Zubair A
    Nanoscale Adv; 2023 Dec; 5(24):6858-6869. PubMed ID: 38059030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible metasurface black nickel with stepped nanopillars.
    Qian Q; Yan Y; Wang C
    Opt Lett; 2018 Mar; 43(6):1231-1234. PubMed ID: 29543259
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Broadband Absorption Tailoring of SiO
    Lian J; Zhang D; Hong R; Yan T; Lv T; Zhang D
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31167393
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling.
    Wu D; Yang L; Liu C; Xu Z; Liu Y; Yu Z; Yu L; Chen L; Ma R; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):144. PubMed ID: 29748920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm.
    Cai H; Sun Y; Wang X; Zhan S
    Opt Express; 2020 May; 28(10):15347-15359. PubMed ID: 32403564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrically tunable metasurface perfect absorber for infrared frequencies.
    Yoon G; So S; Kim M; Mun J; Ma R; Rho J
    Nano Converg; 2017; 4(1):36. PubMed ID: 29291156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region.
    Wu D; Li R; Liu Y; Yu Z; Yu L; Chen L; Liu C; Ma R; Ye H
    Nanoscale Res Lett; 2017 Dec; 12(1):427. PubMed ID: 28655219
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime.
    Wu S; Gu Y; Ye Y; Ye H; Chen L
    Opt Express; 2018 Aug; 26(17):21479-21489. PubMed ID: 30130854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated Multiscale Funnel Structures.
    Ryu Y; Kim C; Ahn J; Urbas AM; Park W; Kim K
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29884-29892. PubMed ID: 30107113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Broadband light absorption by a hemispherical concentric nanoshell array.
    Jiang X; Fan F; Su F; Mu T; Huang C; Zhou L; Hu J
    Nanotechnology; 2024 Mar; 35(23):. PubMed ID: 38430569
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances.
    Farsinezhad S; Shanavas T; Mahdi N; Askar AM; Kar P; Sharma H; Shankar K
    Nanotechnology; 2018 Apr; 29(15):154006. PubMed ID: 29406316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of PEDOT Nanocone Arrays with Electrochemically Modulated Broadband Antireflective Properties.
    So S; Fung HW; Kartub K; Maley AM; Corn RM
    J Phys Chem Lett; 2017 Feb; 8(3):576-579. PubMed ID: 28080058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO
    He H; Shang X; Xu L; Zhao J; Cai W; Wang J; Zhao C; Wang L
    Opt Express; 2020 Feb; 28(4):4563-4570. PubMed ID: 32121690
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor.
    Rifat AA; Rahmani M; Xu L; Miroshnichenko AE
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29954060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.