These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29966378)

  • 61. Broadband infrared circular dichroism in chiral metasurface absorbers.
    Ouyang L; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Nanotechnology; 2020 May; 31(29):295203. PubMed ID: 32289769
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array.
    Zhang B; Zhao Y; Hao Q; Kiraly B; Khoo IC; Chen S; Huang TJ
    Opt Express; 2011 Aug; 19(16):15221-8. PubMed ID: 21934885
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber.
    Luo X; Zhai X; Wang L; Lin Q
    Opt Express; 2018 Apr; 26(9):11658-11666. PubMed ID: 29716084
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultra-Broadband, Polarization-Irrelevant Near-Perfect Absorber Based on Composite Structure.
    Meng Y; Wu J; Liu S; Li Y; Hu B; Jin S
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208391
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared.
    Peng C; Ou K; Li G; Zhao Z; Li X; Liu C; Li X; Chen X; Lu W
    Opt Express; 2021 Apr; 29(9):12893-12902. PubMed ID: 33985035
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability.
    Zou Y; Zhou S; Li J; Chen S; Chen Z
    Nanomaterials (Basel); 2024 Aug; 14(15):. PubMed ID: 39120421
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies.
    Hu D; Wang H; Tang Z; Zhang X
    Appl Opt; 2016 Jul; 55(19):5257-62. PubMed ID: 27409218
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence.
    Han W; Reiter S; Schlipf J; Mai C; Spirito D; Jose J; Wenger C; Fischer IA
    Opt Express; 2023 May; 31(11):17389-17407. PubMed ID: 37381475
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultra-broadband near-perfect metamaterial absorber for photovoltaic applications.
    Nakti PP; Sarker D; Tahmid MI; Zubair A
    Nanoscale Adv; 2023 Dec; 5(24):6858-6869. PubMed ID: 38059030
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Flexible metasurface black nickel with stepped nanopillars.
    Qian Q; Yan Y; Wang C
    Opt Lett; 2018 Mar; 43(6):1231-1234. PubMed ID: 29543259
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Broadband Absorption Tailoring of SiO
    Lian J; Zhang D; Hong R; Yan T; Lv T; Zhang D
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31167393
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure.
    Mahros AM; Alharbi Y
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296818
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling.
    Wu D; Yang L; Liu C; Xu Z; Liu Y; Yu Z; Yu L; Chen L; Ma R; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):144. PubMed ID: 29748920
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm.
    Cai H; Sun Y; Wang X; Zhan S
    Opt Express; 2020 May; 28(10):15347-15359. PubMed ID: 32403564
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrically tunable metasurface perfect absorber for infrared frequencies.
    Yoon G; So S; Kim M; Mun J; Ma R; Rho J
    Nano Converg; 2017; 4(1):36. PubMed ID: 29291156
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.