BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29966452)

  • 1. Design of selective histone deacetylase inhibitors: rethinking classical pharmacophore.
    Melesina J; Praetorius L; Simoben CV; Robaa D; Sippl W
    Future Med Chem; 2018 Jul; 10(13):1537-1540. PubMed ID: 29966452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies To Design Selective Histone Deacetylase Inhibitors.
    Melesina J; Simoben CV; Praetorius L; Bülbül EF; Robaa D; Sippl W
    ChemMedChem; 2021 May; 16(9):1336-1359. PubMed ID: 33428327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inside HDAC with HDAC inhibitors.
    Bertrand P
    Eur J Med Chem; 2010 Jun; 45(6):2095-116. PubMed ID: 20223566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved antiproliferative activity of 1,3,4-thiadiazole-containing histone deacetylase (HDAC) inhibitors by introduction of the heteroaromatic surface recognition motif.
    Guan P; Wang L; Hou X; Wan Y; Xu W; Tang W; Fang H
    Bioorg Med Chem; 2014 Nov; 22(21):5766-75. PubMed ID: 25311567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies.
    Kashyap K; Kakkar R
    J Biomol Struct Dyn; 2020 Jan; 38(1):48-65. PubMed ID: 30633630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient synthesis of SK-658 and its analogs as potent histone deacetylase inhibitors.
    Shahidul Islam M; Nurul Islam M; Ashraful Hoque M; Nishino N; Kato T; Kim HJ; Ito A; Yoshida M
    Bioorg Chem; 2015 Apr; 59():145-50. PubMed ID: 25797804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery.
    Amin SA; Adhikari N; Jha T
    Future Med Chem; 2017 Dec; 9(18):2211-2237. PubMed ID: 29182018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards isozyme-selective HDAC inhibitors for interrogating disease.
    Gupta P; Reid RC; Iyer A; Sweet MJ; Fairlie DP
    Curr Top Med Chem; 2012; 12(14):1479-99. PubMed ID: 22827519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of binding of structurally similar ligands to histone deacetylase 8 sheds light on challenges in the rational design of potent and isozyme-selective inhibitors of the enzyme.
    Singh RK; Suzuki T; Mandal T; Balsubramanian N; Haldar M; Mueller DJ; Strode JA; Cook G; Mallik S; Srivastava DK
    Biochemistry; 2014 Dec; 53(48):7445-58. PubMed ID: 25407689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the isoform selectivity of histone deacetylase inhibitors using chemical feature based pharmacophore and docking approaches.
    Zhu Y; Li HF; Lu S; Zheng YX; Wu Z; Tang WF; Zhou X; Lu T
    Eur J Med Chem; 2010 May; 45(5):1777-91. PubMed ID: 20153566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy based pharmacophore mapping of HDAC inhibitors against class I HDAC enzymes.
    Kalyaanamoorthy S; Chen YP
    Biochim Biophys Acta; 2013 Jan; 1834(1):317-28. PubMed ID: 23457710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural exploration of common pharmacophore based berberine derivatives as novel histone deacetylase inhibitor targeting HDACs enzymes.
    Kandasamy S; Selvaraj M; Muthusamy K; Varadaraju N; Kannupal S; Sekar AK; Vilwanathan R
    J Biomol Struct Dyn; 2023 Mar; 41(5):1690-1703. PubMed ID: 34994284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the Selective Inhibition of Histone Deacetylase 6.
    Rodrigues DA; Thota S; Fraga CA
    Mini Rev Med Chem; 2016; 16(14):1175-84. PubMed ID: 27121714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms.
    Ganai SA; Shanmugam K; Mahadevan V
    J Biomol Struct Dyn; 2015; 33(2):374-87. PubMed ID: 24460542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the design and synthesis of selective HDAC inhibitors.
    Di Micco S; Chini MG; Terracciano S; Bruno I; Riccio R; Bifulco G
    Bioorg Med Chem; 2013 Jul; 21(13):3795-807. PubMed ID: 23693069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design.
    Thangapandian S; John S; Sakkiah S; Lee KW
    Eur J Med Chem; 2010 Oct; 45(10):4409-17. PubMed ID: 20656379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.
    Pabba C; Gregg BT; Kitchen DB; Chen ZJ; Judkins A
    Bioorg Med Chem Lett; 2011 Jan; 21(1):324-8. PubMed ID: 21109435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Customized ZBG Features: A Case Study Using Histone Deacetylase 8.
    Hou X; Du J; Liu R; Zhou Y; Li M; Xu W; Fang H
    J Chem Inf Model; 2015 Apr; 55(4):861-71. PubMed ID: 25757142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone deacetylases: structural determinants of inhibitor selectivity.
    Micelli C; Rastelli G
    Drug Discov Today; 2015 Jun; 20(6):718-35. PubMed ID: 25687212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, and biological activity of hydroxamic tertiary amines as histone deacetylase inhibitors.
    Terracciano S; Chini MG; Riccio R; Bruno I; Bifulco G
    ChemMedChem; 2012 Apr; 7(4):694-702. PubMed ID: 22278987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.