These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 29966746)
1. Patient representation learning and interpretable evaluation using clinical notes. Sushil M; Šuster S; Luyckx K; Daelemans W J Biomed Inform; 2018 Aug; 84():103-113. PubMed ID: 29966746 [TBL] [Abstract][Full Text] [Related]
2. Prediction task guided representation learning of medical codes in EHR. Cui L; Xie X; Shen Z J Biomed Inform; 2018 Aug; 84():1-10. PubMed ID: 29928997 [TBL] [Abstract][Full Text] [Related]
3. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207 [TBL] [Abstract][Full Text] [Related]
4. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
5. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. Tang B; Cao H; Wu Y; Jiang M; Xu H BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040 [TBL] [Abstract][Full Text] [Related]
6. Semi-supervised distributed representations of documents for sentiment analysis. Park S; Lee J; Kim K Neural Netw; 2019 Nov; 119():139-150. PubMed ID: 31425854 [TBL] [Abstract][Full Text] [Related]
7. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051 [TBL] [Abstract][Full Text] [Related]
8. EHR phenotyping via jointly embedding medical concepts and words into a unified vector space. Bai T; Chanda AK; Egleston BL; Vucetic S BMC Med Inform Decis Mak; 2018 Dec; 18(Suppl 4):123. PubMed ID: 30537974 [TBL] [Abstract][Full Text] [Related]
9. Dependency-based Siamese long short-term memory network for learning sentence representations. Zhu W; Yao T; Ni J; Wei B; Lu Z PLoS One; 2018; 13(3):e0193919. PubMed ID: 29513748 [TBL] [Abstract][Full Text] [Related]
10. Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. Jaeger S; Fulle S; Turk S J Chem Inf Model; 2018 Jan; 58(1):27-35. PubMed ID: 29268609 [TBL] [Abstract][Full Text] [Related]
11. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics. Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274 [TBL] [Abstract][Full Text] [Related]
12. Towards automated clinical coding. Catling F; Spithourakis GP; Riedel S Int J Med Inform; 2018 Dec; 120():50-61. PubMed ID: 30409346 [TBL] [Abstract][Full Text] [Related]
13. A novel biomedical image indexing and retrieval system via deep preference learning. Pang S; Orgun MA; Yu Z Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790 [TBL] [Abstract][Full Text] [Related]
14. ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU. Caicedo-Torres W; Gutierrez J J Biomed Inform; 2019 Oct; 98():103269. PubMed ID: 31430550 [TBL] [Abstract][Full Text] [Related]
15. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks. Beguš G Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122 [TBL] [Abstract][Full Text] [Related]
16. Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study. Kumar S; Nanelia A; Mariappan R; Rajagopal A; Rajan V JMIR Med Inform; 2022 Jan; 10(1):e28842. PubMed ID: 35049514 [TBL] [Abstract][Full Text] [Related]
17. Natural language processing and machine learning approaches for food categorization and nutrition quality prediction compared with traditional methods. Hu G; Ahmed M; L'Abbé MR Am J Clin Nutr; 2023 Mar; 117(3):553-563. PubMed ID: 36872019 [TBL] [Abstract][Full Text] [Related]
18. Recognizing Disjoint Clinical Concepts in Clinical Text Using Machine Learning-based Methods. Tang B; Chen Q; Wang X; Wu Y; Zhang Y; Jiang M; Wang J; Xu H AMIA Annu Symp Proc; 2015; 2015():1184-93. PubMed ID: 26958258 [TBL] [Abstract][Full Text] [Related]
19. Predicting of anaphylaxis in big data EMR by exploring machine learning approaches. Segura-Bedmar I; Colón-Ruíz C; Tejedor-Alonso MÁ; Moro-Moro M J Biomed Inform; 2018 Nov; 87():50-59. PubMed ID: 30266231 [TBL] [Abstract][Full Text] [Related]
20. Chemical-induced disease relation extraction with dependency information and prior knowledge. Zhou H; Ning S; Yang Y; Liu Z; Lang C; Lin Y J Biomed Inform; 2018 Aug; 84():171-178. PubMed ID: 30017973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]