These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 29966746)

  • 1. Patient representation learning and interpretable evaluation using clinical notes.
    Sushil M; Šuster S; Luyckx K; Daelemans W
    J Biomed Inform; 2018 Aug; 84():103-113. PubMed ID: 29966746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing natural language processing representations of coded disease sequences for prediction in electronic health records.
    Beaney T; Jha S; Alaa A; Smith A; Clarke J; Woodcock T; Majeed A; Aylin P; Barahona M
    J Am Med Inform Assoc; 2024 Jun; 31(7):1451-1462. PubMed ID: 38719204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning Contextual Hierarchical Structure of Medical Concepts with Poincairé Embeddings to Clarify Phenotypes.
    Beaulieu-Jones BK; Kohane IS; Beam AL
    Pac Symp Biocomput; 2019; 24():8-17. PubMed ID: 30864306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Representations from Medical Text for Effective Diagnoses and Knowledge Discovery.
    Sun Z; Shi H; Huang Z; Ding N
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-7. PubMed ID: 38083156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes Representation Learning.
    Le TD; Noumeir R; Rambaud J; Sans G; Jouvet P
    IEEE J Transl Eng Health Med; 2023; 11():469-478. PubMed ID: 37817825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomaly detection for high-content image-based phenotypic cell profiling.
    Shpigler A; Kolet N; Golan S; Weisbart E; Zaritsky A
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph.
    Rabby G; D'Souza J; Oelen A; Dvorackova L; Svátek V; Auer S
    J Biomed Semantics; 2023 Nov; 14(1):18. PubMed ID: 38017587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking medical students' clinical experiences using natural language processing.
    Denny JC; Bastarache L; Sastre EA; Spickard A
    J Biomed Inform; 2009 Oct; 42(5):781-9. PubMed ID: 19236956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Pretrained Models Really Learn Better Molecular Representations for AI-Aided Drug Discovery?
    Zhang Z; Bian Y; Xie A; Han P; Zhou S
    J Chem Inf Model; 2024 Apr; 64(7):2921-2930. PubMed ID: 38145387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DRLM: A Robust Drug Representation Learning Method and its Applications.
    Fu H; Zhao C; Niu X; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3451-3460. PubMed ID: 36223356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.
    Liu S; Tang B; Chen Q; Wang X; Fan X
    Comput Math Methods Med; 2015; 2015():913489. PubMed ID: 25861377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal Moore-Penrose Inverse-Based Recomputation Framework for Big Data Analysis.
    Zhang W; Yang Y; Wu QMJ; Wang T; Zhang H
    IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):6570-6582. PubMed ID: 36279331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretability Is in the Mind of the Beholder: A Causal Framework for Human-Interpretable Representation Learning.
    Marconato E; Passerini A; Teso S
    Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AC-PLT: An algorithm for computer-assisted coding of semantic property listing data.
    Ramos D; Moreno S; Canessa E; Chaigneau SE; Marchant N
    Behav Res Methods; 2024 Apr; 56(4):3366-3379. PubMed ID: 37831369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning supervised embeddings for large scale sequence comparisons.
    Kimothi D; Biyani P; Hogan JM; Soni A; Kelly W
    PLoS One; 2020; 15(3):e0216636. PubMed ID: 32168338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continual task learning in natural and artificial agents.
    Flesch T; Saxe A; Summerfield C
    Trends Neurosci; 2023 Mar; 46(3):199-210. PubMed ID: 36682991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-Temporal Scale Coded Bag-of-Words.
    Govender D; Tapamo JR
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes.
    Jiang Y; Irvin JA; Ng AY; Zou J
    Pac Symp Biocomput; 2024; 29():120-133. PubMed ID: 38160274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph Representation Learning-Based Fixed-Length Clinical Feature Vector Generation from Heterogeneous Medical Records.
    Seki T; Kawazoe Y; Ohe K
    Stud Health Technol Inform; 2024 Jan; 310():715-719. PubMed ID: 38269902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.