BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29966763)

  • 21. An intron in the YRA1 gene is required to control Yra1 protein expression and mRNA export in yeast.
    Rodríguez-Navarro S; Strässer K; Hurt E
    EMBO Rep; 2002 May; 3(5):438-42. PubMed ID: 11964382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron.
    Parker R; Siliciano PG
    Nature; 1993 Feb; 361(6413):660-2. PubMed ID: 8437627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness.
    Li B; Vilardell J; Warner JR
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1596-600. PubMed ID: 8643676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention.
    Scherrer FW; Spingola M
    RNA; 2006 Jul; 12(7):1361-72. PubMed ID: 16738408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutations in the SF1-U2AF59-U2AF23 complex cause exon skipping in Schizosaccharomyces pombe.
    Haraguchi N; Andoh T; Frendewey D; Tani T
    J Biol Chem; 2007 Jan; 282(4):2221-8. PubMed ID: 17130122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation.
    Egecioglu DE; Kawashima TR; Chanfreau GF
    Nucleic Acids Res; 2012 Feb; 40(4):1787-96. PubMed ID: 22021379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism.
    Cuenca-Bono B; García-Molinero V; Pascual-García P; García-Oliver E; Llopis A; Rodríguez-Navarro S
    BMC Cell Biol; 2010 Mar; 11():19. PubMed ID: 20230609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing.
    Goguel V; Wang Y; Rosbash M
    Mol Cell Biol; 1993 Nov; 13(11):6841-8. PubMed ID: 8413277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The quest for a message: budding yeast, a model organism to study the control of pre-mRNA splicing.
    Meyer M; Vilardell J
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):60-7. PubMed ID: 19279072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events.
    Qin D; Huang L; Wlodaver A; Andrade J; Staley JP
    RNA; 2016 Feb; 22(2):237-53. PubMed ID: 26647463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trans-complementation of the second step of pre-mRNA splicing by exogenous 5' exons.
    Chanfreau G; Gouyette C; Schwer B; Jacquier A
    RNA; 1999 Jul; 5(7):876-82. PubMed ID: 10411131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding of a cell-type-specific RNA splicing factor to its target regulatory sequence.
    Nandabalan K; Roeder GS
    Mol Cell Biol; 1995 Apr; 15(4):1953-60. PubMed ID: 7891689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene.
    Dahan O; Kupiec M
    Nucleic Acids Res; 2004; 32(8):2529-40. PubMed ID: 15133121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cwc21p promotes the second step conformation of the spliceosome and modulates 3' splice site selection.
    Gautam A; Grainger RJ; Vilardell J; Barrass JD; Beggs JD
    Nucleic Acids Res; 2015 Mar; 43(6):3309-17. PubMed ID: 25740649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional interactions between Prp8, Prp18, Slu7, and U5 snRNA during the second step of pre-mRNA splicing.
    Aronova A; Bacíková D; Crotti LB; Horowitz DS; Schwer B
    RNA; 2007 Sep; 13(9):1437-44. PubMed ID: 17626844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing.
    Das D; Clark TA; Schweitzer A; Yamamoto M; Marr H; Arribere J; Minovitsky S; Poliakov A; Dubchak I; Blume JE; Conboy JG
    Nucleic Acids Res; 2007; 35(14):4845-57. PubMed ID: 17626050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA-RNA interactions and pre-mRNA mislocalization as drivers of group II intron loss from nuclear genomes.
    Qu G; Dong X; Piazza CL; Chalamcharla VR; Lutz S; Curcio MJ; Belfort M
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6612-7. PubMed ID: 24722636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of pre-mRNA escape rate and synergy in splicing.
    Bonde MM; Voegeli S; Baudrimont A; Séraphin B; Becskei A
    Nucleic Acids Res; 2014 Nov; 42(20):12847-60. PubMed ID: 25352554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1gamma gene.
    Fukumura K; Kato A; Jin Y; Ideue T; Hirose T; Kataoka N; Fujiwara T; Sakamoto H; Inoue K
    Nucleic Acids Res; 2007; 35(16):5303-11. PubMed ID: 17686786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.