BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 29966866)

  • 1. Non-linear dynamics of cardiac autonomic activity during cycling exercise with varied cadence.
    Gronwald T; Ludyga S; Hoos O; Hottenrott K
    Hum Mov Sci; 2018 Aug; 60():225-233. PubMed ID: 29966866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Acute Normobaric Hypoxia on Non-linear Dynamics of Cardiac Autonomic Activity During Constant Workload Cycling Exercise.
    Gronwald T; Hoos O; Hottenrott K
    Front Physiol; 2019; 10():999. PubMed ID: 31427992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a Short-Term Cycling Interval Session and Active Recovery on Non-Linear Dynamics of Cardiac Autonomic Activity in Endurance Trained Cyclists.
    Gronwald T; Hoos O; Hottenrott K
    J Clin Med; 2019 Feb; 8(2):. PubMed ID: 30736284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-linear dynamics of heart rate variability during incremental cycling exercise.
    Gronwald T; Hoos O; Ludyga S; Hottenrott K
    Res Sports Med; 2019; 27(1):88-98. PubMed ID: 30040499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined heart rate variability and dynamic measures for quantitatively characterizing the cardiac stress status during cycling exercise.
    Chen SW; Liaw JW; Chang YJ; Chuang LL; Chien CT
    Comput Biol Med; 2015 Aug; 63():133-42. PubMed ID: 26079198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise.
    Mendonca GV; Heffernan KS; Rossow L; Guerra M; Pereira FD; Fernhall B
    Appl Physiol Nutr Metab; 2010 Aug; 35(4):439-46. PubMed ID: 20725109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation properties of heart rate variability during endurance exercise: A systematic review.
    Gronwald T; Hoos O
    Ann Noninvasive Electrocardiol; 2020 Jan; 25(1):e12697. PubMed ID: 31498541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of detrended fluctuation analysis of heart rate variability to determine intensity thresholds in elite cyclists.
    Mateo-March M; Moya-Ramón M; Javaloyes A; Sánchez-Muñoz C; Clemente-Suárez VJ
    Eur J Sport Sci; 2023 Apr; 23(4):580-587. PubMed ID: 35238695
    [No Abstract]   [Full Text] [Related]  

  • 9. Correlation Properties of Heart Rate Variability during a Marathon Race in Recreational Runners: Potential Biomarker of Complex Regulation during Endurance Exercise.
    Gronwald T; Rogers B; Hottenrott L; Hoos O; Hottenrott K
    J Sports Sci Med; 2021 Dec; 20(4):557-563. PubMed ID: 35321146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular and Autonomic Responses to a Maximal Exercise Test in Elite Youngsters.
    Blasco-Lafarga C; Camarena B; Mateo-March M
    Int J Sports Med; 2017 Sep; 38(9):666-674. PubMed ID: 28704881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart rate variability during incremental cycling exercise in healthy untrained young men.
    Banach T; Grandys M; Juszczak K; Kolasińska-Kloch W; Zoładź J; Laskiewicz J; Thor PJ
    Folia Med Cracov; 2004; 45(1-2):3-12. PubMed ID: 16276821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise.
    Okano AH; Fontes EB; Montenegro RA; Farinatti Pde T; Cyrino ES; Li LM; Bikson M; Noakes TD
    Br J Sports Med; 2015 Sep; 49(18):1213-8. PubMed ID: 23446641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.
    Weippert M; Behrens K; Rieger A; Kumar M; Behrens M
    Appl Physiol Nutr Metab; 2015 Aug; 40(8):762-8. PubMed ID: 26187271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of heart rate recovery and cardiovascular autonomic modulation in healthy participants after submaximal exercise.
    Facioli TP; Philbois SV; Gastaldi AC; Almeida DS; Maida KD; Rodrigues JAL; Sánchez-Delgado JC; Souza HCD
    Sci Rep; 2021 Feb; 11(1):3620. PubMed ID: 33574441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-linear analyses of heart rate variability during heavy exercise and recovery in cyclists.
    Casties JF; Mottet D; Le Gallais D
    Int J Sports Med; 2006 Oct; 27(10):780-5. PubMed ID: 16586334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RPE-lactate dissociation during extended cycling.
    Green JM; McLester JR; Crews TR; Wickwire PJ; Pritchett RC; Redden A
    Eur J Appl Physiol; 2005 May; 94(1-2):145-50. PubMed ID: 15702340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pacing pattern in a 30-minute maximal cycling test.
    Chaffin ME; Berg K; Zuniga J; Hanumanthu VS
    J Strength Cond Res; 2008 Nov; 22(6):2011-7. PubMed ID: 18978608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of music during exercise on RPE, heart rate and the autonomic nervous system.
    Yamashita S; Iwai K; Akimoto T; Sugawara J; Kono I
    J Sports Med Phys Fitness; 2006 Sep; 46(3):425-30. PubMed ID: 16998447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditions of autonomic reciprocal interplay versus autonomic co-activation: effects on non-linear heart rate dynamics.
    Mourot L; Bouhaddi M; Gandelin E; Cappelle S; Nguyen NU; Wolf JP; Rouillon JD; Hughson R; Regnard J
    Auton Neurosci; 2007 Dec; 137(1-2):27-36. PubMed ID: 17662671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of rate of perceived exertion-based exercise training in patients with heart failure: insights from autonomic nervous system adaptations.
    Iellamo F; Manzi V; Caminiti G; Vitale C; Massaro M; Cerrito A; Rosano G; Volterrani M
    Int J Cardiol; 2014 Sep; 176(2):394-8. PubMed ID: 25129282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.