These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2996695)
1. Effects of intrathecally administered methysergide and yohimbine on microstimulation-produced antinociception in the rat. Barbaro NM; Hammond DL; Fields HL Brain Res; 1985 Sep; 343(2):223-9. PubMed ID: 2996695 [TBL] [Abstract][Full Text] [Related]
2. Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Hammond DL; Yaksh TL Brain Res; 1984 Apr; 298(2):329-37. PubMed ID: 6326954 [TBL] [Abstract][Full Text] [Related]
3. Spinal pharmacology of antinociception produced by microinjection of mu or delta opioid receptor agonists in the ventromedial medulla of the rat. Hurley RW; Banfor P; Hammond DL Neuroscience; 2003; 118(3):789-96. PubMed ID: 12710986 [TBL] [Abstract][Full Text] [Related]
4. Differential actions of the blockade of spinal opioid, adrenergic and serotonergic receptors on the tail-flick inhibition induced by morphine microinjected into dorsal raphe and central gray in rats. Tseng LL; Tang R Neuroscience; 1989; 33(1):93-100. PubMed ID: 2557562 [TBL] [Abstract][Full Text] [Related]
5. Spinal monoaminergic receptors mediate the antinociception produced by glutamate in the medullary lateral reticular nucleus. Janss AJ; Gebhart GF J Neurosci; 1987 Sep; 7(9):2862-73. PubMed ID: 2887644 [TBL] [Abstract][Full Text] [Related]
6. Intrathecal methysergide antagonizes the antinociception, but not the hyperalgesia produced by microinjection of baclofen in the ventromedial medulla of the rat. Hammond DL; Nelson V; Thomas DA Neurosci Lett; 1998 Mar; 244(2):93-6. PubMed ID: 9572593 [TBL] [Abstract][Full Text] [Related]
7. Intrathecal GABAB antagonists attenuate the antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat. McGowan MK; Hammond DL Brain Res; 1993 Apr; 607(1-2):39-46. PubMed ID: 8097668 [TBL] [Abstract][Full Text] [Related]
8. Antagonism of stimulation-produced antinociception from ventrolateral pontine sites by intrathecal administration of alpha-adrenergic antagonists and naloxone. Miller JF; Proudfit HK Brain Res; 1990 Oct; 530(1):20-34. PubMed ID: 1980228 [TBL] [Abstract][Full Text] [Related]
9. Antinociception induced by local injections of carbachol into the nucleus raphe magnus in rats: alteration by intrathecal injection of monoaminergic antagonists. Brodie MS; Proudfit HK Brain Res; 1986 Apr; 371(1):70-9. PubMed ID: 3708347 [TBL] [Abstract][Full Text] [Related]
10. Cannabinoid-induced antinociception is mediated by a spinal alpha 2-noradrenergic mechanism. Lichtman AH; Martin BR Brain Res; 1991 Sep; 559(2):309-14. PubMed ID: 1665384 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study. Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478 [TBL] [Abstract][Full Text] [Related]
12. Antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat: mediation by spinal GABAA receptors. McGowan MK; Hammond DL Brain Res; 1993 Aug; 620(1):86-96. PubMed ID: 8104668 [TBL] [Abstract][Full Text] [Related]
13. Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Aimone LD; Jones SL; Gebhart GF Pain; 1987 Oct; 31(1):123-136. PubMed ID: 2892163 [TBL] [Abstract][Full Text] [Related]
14. Spinal cholinergic and monoamine receptors mediate the antinociceptive effect of morphine microinjected in the periaqueductal gray on the rat tail, but not the feet. Fang F; Proudfit HK Brain Res; 1996 May; 722(1-2):95-108. PubMed ID: 8813354 [TBL] [Abstract][Full Text] [Related]
15. Role of norepinephrine in the interaction between the lateral reticular nucleus and the nucleus raphe magnus: an electrophysiological and behavioral study. Murphy AZ; Behbehani MM Pain; 1993 Nov; 55(2):183-193. PubMed ID: 8309708 [TBL] [Abstract][Full Text] [Related]
16. Alterations in nociception following lesions of the A5 catecholamine nucleus. Sagen J; Proudfit HK Brain Res; 1986 Apr; 370(1):93-101. PubMed ID: 3754780 [TBL] [Abstract][Full Text] [Related]
17. [Analgesic action of microinjection of neurokinin A into the lateral reticular nucleus and nucleus raphe magnus in rats]. Yan GP; Zhao Y; Huang QE; Chen WM Sheng Li Xue Bao; 1996 Oct; 48(5):493-6. PubMed ID: 9387783 [TBL] [Abstract][Full Text] [Related]
18. 5-Hydroxytryptamine de Oliveira R; de Oliveira RC; Falconi-Sobrinho LL; da Silva Soares R; Coimbra NC Behav Brain Res; 2017 Jan; 316():294-304. PubMed ID: 27616344 [TBL] [Abstract][Full Text] [Related]
19. Analgesia produced by microinjection of L-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents. Satoh M; Oku R; Akaike A Brain Res; 1983 Feb; 261(2):361-4. PubMed ID: 6131729 [TBL] [Abstract][Full Text] [Related]
20. Differential contribution of descending serotonergic and noradrenergic systems to central Tyr-D-Ala2-Gly-NMePhe4-Gly-ol5 (DAMGO) and morphine-induced antinociception in mice. Arts KS; Holmes BB; Fujimoto JM J Pharmacol Exp Ther; 1991 Mar; 256(3):890-6. PubMed ID: 2005587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]