These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2996695)
21. Serotonin and/or an excitatory amino acid in the medial medulla mediates stimulation-produced antinociception from the lateral hypothalamus in the rat. Aimone LD; Gebhart GF Brain Res; 1988 May; 450(1-2):170-80. PubMed ID: 2841001 [TBL] [Abstract][Full Text] [Related]
22. The effect of alpha2-adrenergic drugs on the activity of neurons in the rat nucleus raphe magnus in vitro. Kanda T; Ohta Y; Kida A; Kemmotsu O Anesth Analg; 1999 Feb; 88(2):459-61. PubMed ID: 9972774 [TBL] [Abstract][Full Text] [Related]
23. Evidence for involvement of separate mechanisms in the production of analgesia by electrical stimulation of the nucleus reticularis paragigantocellularis and nucleus raphe magnus in the rat. Satoh M; Akaike A; Nakazawa T; Takagi H Brain Res; 1980 Aug; 194(2):525-9. PubMed ID: 6248172 [No Abstract] [Full Text] [Related]
24. Examination of spinal monoamine receptors through which brainstem opiate-sensitive systems act in the rat. Jensen TS; Yaksh TL Brain Res; 1986 Jan; 363(1):114-27. PubMed ID: 3004638 [TBL] [Abstract][Full Text] [Related]
25. Pharmacological evidence for a periaqueductal gray-nucleus raphe magnus connection mediating the antinociception induced by microinjecting carbachol into the dorsal periaqueductal gray of rats. GuimarĂ£es AP; Prado WA Brain Res; 1999 May; 827(1-2):152-9. PubMed ID: 10320704 [TBL] [Abstract][Full Text] [Related]
26. Intrathecal coadministration of clonidine with serotonin receptor agonists produces supra-additive visceral antinociception in the rat. Danzebrink RM; Gebhart GF Brain Res; 1991 Jul; 555(1):35-42. PubMed ID: 1933328 [TBL] [Abstract][Full Text] [Related]
27. The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Azami J; Llewelyn MB; Roberts MHT Pain; 1982 Mar; 12(3):229-246. PubMed ID: 7078984 [TBL] [Abstract][Full Text] [Related]
28. GABAergic modulation of nociceptive threshold: effects of THIP and bicuculline microinjected in the ventral medulla of the rat. Drower EJ; Hammond DL Brain Res; 1988 May; 450(1-2):316-24. PubMed ID: 3401715 [TBL] [Abstract][Full Text] [Related]
29. Spinal serotonin receptors mediate descending facilitation of a nociceptive reflex from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Zhuo M; Gebhart GF Brain Res; 1991 May; 550(1):35-48. PubMed ID: 1888999 [TBL] [Abstract][Full Text] [Related]
30. Serotonergic mediation of spinal analgesia and its interaction with noradrenergic systems. Nakagawa I; Omote K; Kitahata LM; Collins JG; Murata K Anesthesiology; 1990 Sep; 73(3):474-8. PubMed ID: 2393131 [TBL] [Abstract][Full Text] [Related]
31. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat. Jones SL; Gebhart GF J Neurophysiol; 1987 Jul; 58(1):138-59. PubMed ID: 3612222 [TBL] [Abstract][Full Text] [Related]
32. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome. de Oliveira RC; de Oliveira R; Ferreira CM; Coimbra NC Exp Neurol; 2006 Sep; 201(1):144-53. PubMed ID: 16842781 [TBL] [Abstract][Full Text] [Related]
33. Characterization of coeruleospinal inhibition of the nociceptive tail-flick reflex in the rat: mediation by spinal alpha 2-adrenoceptors. Jones SL; Gebhart GF Brain Res; 1986 Feb; 364(2):315-30. PubMed ID: 2868781 [TBL] [Abstract][Full Text] [Related]
34. Role of spinal delta1 and delta2 opioid receptors in the antinociception produced by microinjection of L-glutamate in the ventromedial medulla of the rat. Hammond DL; Donahue BB; Stewart PE Brain Res; 1997 Aug; 765(1):177-81. PubMed ID: 9310411 [TBL] [Abstract][Full Text] [Related]
35. Characterization of the antinociception produced by intrathecally administered muscarinic agonists in rats. Iwamoto ET; Marion L J Pharmacol Exp Ther; 1993 Jul; 266(1):329-38. PubMed ID: 8101218 [TBL] [Abstract][Full Text] [Related]
36. Dual actions of lysergic acid diethylamide tartrate (LSD), 2-bromo-D-lysergic acid diethylamide bitartrate (BOL) and methysergide on dorsal root potentials evoked by stimulation of raphe nuclei. Larson AA; Chinn C; Proudfit HK; Anderson EG J Pharmacol Exp Ther; 1981 Apr; 217(1):99-104. PubMed ID: 6110778 [TBL] [Abstract][Full Text] [Related]
37. Intrathecal 5-hydroxytryptamine and electrical stimulation of the nucleus raphe magnus in rats both reduce the antinociceptive potency of intrathecally administered noradrenaline. Clatworthy A; Williams JH; Barasi S Brain Res; 1988 Jul; 455(2):300-6. PubMed ID: 3401785 [TBL] [Abstract][Full Text] [Related]
38. Intrathecal morphine and clonidine: antinociceptive tolerance and cross-tolerance and effects on blood pressure. Solomon RE; Gebhart GF J Pharmacol Exp Ther; 1988 May; 245(2):444-54. PubMed ID: 3367301 [TBL] [Abstract][Full Text] [Related]
39. Hypoalgesia induced by the local injection of phentolamine in the nucleus raphe magnus: blockade by depletion of spinal cord monoamines. Sagen J; Winker MA; Proudfit HK Pain; 1983 Jul; 16(3):253-263. PubMed ID: 6310470 [TBL] [Abstract][Full Text] [Related]
40. Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways. Wigdor S; Wilcox GL J Pharmacol Exp Ther; 1987 Jul; 242(1):90-5. PubMed ID: 3612540 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]