These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29967032)

  • 21. Fusion activity of transmembrane and cytoplasmic domain chimeras of the influenza virus glycoprotein hemagglutinin.
    Schroth-Diez B; Ponimaskin E; Reverey H; Schmidt MF; Herrmann A
    J Virol; 1998 Jan; 72(1):133-41. PubMed ID: 9420208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes.
    Fan ZA; Tsang KY; Chen SH; Chen YF
    Sci Rep; 2016 Aug; 6():31470. PubMed ID: 27534263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion.
    Melikyan GB; Brener SA; Ok DC; Cohen FS
    J Cell Biol; 1997 Mar; 136(5):995-1005. PubMed ID: 9060465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion.
    Li Y; Han X; Lai AL; Bushweller JH; Cafiso DS; Tamm LK
    J Virol; 2005 Sep; 79(18):12065-76. PubMed ID: 16140782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship of membrane sidedness to the effects of the lipophosphoglycan of Leishmania donovani on the fusion of influenza virus.
    Razinkov V; Martin I; Turco SJ; Cohen FS; Ruysschaert JM; Epand RM
    Eur J Biochem; 1999 Jun; 262(3):890-9. PubMed ID: 10411653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liposome composition effects on lipid mixing between cells expressing influenza virus hemagglutinin and bound liposomes.
    Bailey A; Zhukovsky M; Gliozzi A; Chernomordik LV
    Arch Biochem Biophys; 2005 Jul; 439(2):211-21. PubMed ID: 15963452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of influenza virus fusion peptide with lipid membranes: effect of lysolipid.
    Ohki S; Baker GA; Page PM; McCarty TA; Epand RM; Bright FV
    J Membr Biol; 2006; 211(3):191-200. PubMed ID: 17091213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin.
    Nüssler F; Clague MJ; Herrmann A
    Biophys J; 1997 Nov; 73(5):2280-91. PubMed ID: 9370425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein.
    Kim IS; Jenni S; Stanifer ML; Roth E; Whelan SP; van Oijen AM; Harrison SC
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):E28-E36. PubMed ID: 27974607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin.
    Han X; Bushweller JH; Cafiso DS; Tamm LK
    Nat Struct Biol; 2001 Aug; 8(8):715-20. PubMed ID: 11473264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between the infectivity of influenza virus and the ability of its fusion peptide to perturb bilayers.
    Epand RM; Epand RF
    Biochem Biophys Res Commun; 1994 Aug; 202(3):1420-5. PubMed ID: 8060322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fusion Pores Live on the Edge.
    Blokhuis EM; D'Agostino M; Mayer A; Risselada HJ
    J Phys Chem Lett; 2020 Feb; 11(4):1204-1208. PubMed ID: 31944770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneity of early intermediates in cell-liposome fusion mediated by influenza hemagglutinin.
    Zhukovsky MA; Leikina E; Markovic I; Bailey AL; Chernomordik LV
    Biophys J; 2006 Nov; 91(9):3349-58. PubMed ID: 16905609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Factors determining vesicular lipid mixing induced by shortened constructs of influenza hemagglutinin.
    LeDuc DL; Shin YK; Epand RF; Epand RM
    Biochemistry; 2000 Mar; 39(10):2733-9. PubMed ID: 10704225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of lipid molecule headgroup mismatch on non steroidal anti-inflammatory drugs induced membrane fusion.
    Mondal Roy S; Sarkar M
    Langmuir; 2011 Dec; 27(24):15054-64. PubMed ID: 21999838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers.
    Colotto A; Epand RM
    Biochemistry; 1997 Jun; 36(25):7644-51. PubMed ID: 9201905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bilayer-Coated Nanoparticles Reveal How Influenza Viral Entry Depends on Membrane Deformability but Not Curvature.
    Villamil Giraldo AM; Kasson PM
    J Phys Chem Lett; 2020 Sep; 11(17):7190-7196. PubMed ID: 32808796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of cholesterol on the interaction of the HIV GP41 fusion peptide with model membranes. Importance of the membrane dipole potential.
    Buzón V; Cladera J
    Biochemistry; 2006 Dec; 45(51):15768-75. PubMed ID: 17176099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion.
    Takeda M; Leser GP; Russell CJ; Lamb RA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14610-7. PubMed ID: 14561897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers.
    Gray C; Tamm LK
    Protein Sci; 1998 Nov; 7(11):2359-73. PubMed ID: 9828002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.