BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29967062)

  • 1. Quantifying compartment-associated variations of protein abundance in proteomics data.
    Parca L; Beck M; Bork P; Ori A
    Mol Syst Biol; 2018 Jul; 14(7):e8131. PubMed ID: 29967062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization and dissemination of multidimensional proteomics data comparing protein abundance during Caenorhabditis elegans development.
    Riffle M; Merrihew GE; Jaschob D; Sharma V; Davis TN; Noble WS; MacCoss MJ
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1827-36. PubMed ID: 26133526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics.
    Krijgsveld J; Ketting RF; Mahmoudi T; Johansen J; Artal-Sanz M; Verrijzer CP; Plasterk RH; Heck AJ
    Nat Biotechnol; 2003 Aug; 21(8):927-31. PubMed ID: 12858183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Worms from venus and mars: proteomics profiling of sexual differences in Caenorhabditis elegans using in vivo 15N isotope labeling.
    Tops BB; Gauci S; Heck AJ; Krijgsveld J
    J Proteome Res; 2010 Jan; 9(1):341-51. PubMed ID: 19916504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics applications in Caenorhabditis elegans research.
    Husson SJ; Moyson S; Valkenborg D; Baggerman G; Mertens I
    Biochem Biophys Res Commun; 2015 Dec; 468(4):519-24. PubMed ID: 26585491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative mass spectrometry identifies insulin signaling targets in C. elegans.
    Dong MQ; Venable JD; Au N; Xu T; Park SK; Cociorva D; Johnson JR; Dillin A; Yates JR
    Science; 2007 Aug; 317(5838):660-3. PubMed ID: 17673661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.
    Bensaddek D; Narayan V; Nicolas A; Murillo AB; Gartner A; Kenyon CJ; Lamond AI
    Proteomics; 2016 Feb; 16(3):381-92. PubMed ID: 26552604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-worm quantitative proteomics reveals aging heterogeneity in isogenic Caenorhabditis elegans.
    Zhu TY; Li ST; Liu DD; Zhang X; Zhou L; Zhou R; Yang B
    Aging Cell; 2024 Mar; 23(3):e14055. PubMed ID: 38044578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking of protein carbonylation analysis in Caenorhabditis elegans: specific considerations and general advice.
    Pyr Dit Ruys S; Bonzom JM; Frelon S
    Free Radic Biol Med; 2016 Oct; 99():364-373. PubMed ID: 27521457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Proteomics Analysis of the Response to Starvation in C. elegans.
    Larance M; Pourkarimi E; Wang B; Brenes Murillo A; Kent R; Lamond AI; Gartner A
    Mol Cell Proteomics; 2015 Jul; 14(7):1989-2001. PubMed ID: 25963834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo mapping of tissue- and subcellular-specific proteomes in
    Reinke AW; Mak R; Troemel ER; Bennett EJ
    Sci Adv; 2017 May; 3(5):e1602426. PubMed ID: 28508060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomics analysis of Caenorhabditis elegans upon germ cell loss.
    Pu YZ; Wan QL; Ding AJ; Luo HR; Wu GS
    J Proteomics; 2017 Mar; 156():85-93. PubMed ID: 28119113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics.
    Sidoli S; Vandamme J; Salcini AE; Jensen ON
    Proteomics; 2016 Feb; 16(3):459-64. PubMed ID: 26508544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics analysis in Caenorhabditis elegans to elucidate the response induced by tyrosol, an olive phenol that stimulates longevity and stress resistance.
    Cañuelo A; Peragón J
    Proteomics; 2013 Oct; 13(20):3064-75. PubMed ID: 23929540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of Insoluble Protein Aggregation in Caenorhabditis elegans during Aging with a Novel Data-Independent Acquisition Workflow.
    Xie X; Chamoli M; Bhaumik D; Sivapatham R; Angeli S; Andersen JK; Lithgow GJ; Schilling B
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32831297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C. elegans: an invaluable model organism for the proteomics studies of the cholesterol-mediated signaling pathway.
    Paik YK; Jeong SK; Lee EY; Jeong PY; Shim YH
    Expert Rev Proteomics; 2006 Aug; 3(4):439-53. PubMed ID: 16901202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteome analysis of Caenorhabditis elegans upon exposure to nematicidal Bacillus thuringiensis.
    Treitz C; Cassidy L; Höckendorf A; Leippe M; Tholey A
    J Proteomics; 2015 Jan; 113():337-50. PubMed ID: 25452134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics in Caenorhabditis elegans.
    Audhya A; Desai A
    Brief Funct Genomic Proteomic; 2008 May; 7(3):205-10. PubMed ID: 18372286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans.
    Kim S; Lee HJ; Hahm JH; Jeong SK; Park DH; Hancock WS; Paik YK
    J Proteome Res; 2016 Feb; 15(2):531-9. PubMed ID: 26751275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes.
    Schrimpf SP; Weiss M; Reiter L; Ahrens CH; Jovanovic M; Malmström J; Brunner E; Mohanty S; Lercher MJ; Hunziker PE; Aebersold R; von Mering C; Hengartner MO
    PLoS Biol; 2009 Mar; 7(3):e48. PubMed ID: 19260763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.