BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 29967137)

  • 1. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.
    Shao J; Wang M; Yu G; Zhu S; Yu Y; Heng BC; Wu J; Ye H
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6722-E6730. PubMed ID: 29967137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rewiring Calcium Signaling for Precise Transcriptional Reprogramming.
    Nguyen NT; He L; Martinez-Moczygemba M; Huang Y; Zhou Y
    ACS Synth Biol; 2018 Mar; 7(3):814-821. PubMed ID: 29489336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical control of mammalian endogenous transcription and epigenetic states.
    Konermann S; Brigham MD; Trevino A; Hsu PD; Heidenreich M; Cong L; Platt RJ; Scott DA; Church GM; Zhang F
    Nature; 2013 Aug; 500(7463):472-476. PubMed ID: 23877069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System.
    Li S; Xue H; Wu J; Rao MS; Kim DH; Deng W; Liu Y
    Stem Cells Dev; 2015 Dec; 24(24):2925-42. PubMed ID: 26414932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.
    Polstein LR; Gersbach CA
    Nat Chem Biol; 2015 Mar; 11(3):198-200. PubMed ID: 25664691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9-based photoactivatable transcription system.
    Nihongaki Y; Yamamoto S; Kawano F; Suzuki H; Sato M
    Chem Biol; 2015 Feb; 22(2):169-74. PubMed ID: 25619936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Manipulating Living Systems by Light].
    Sato M
    Yakugaku Zasshi; 2020; 140(8):993-1000. PubMed ID: 32741873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons.
    Zhou M; Cao Y; Sui M; Shu X; Wan F; Zhang B
    Cell Mol Life Sci; 2022 May; 79(6):315. PubMed ID: 35610381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming.
    Smith DK; Yang J; Liu ML; Zhang CL
    Stem Cell Reports; 2016 Nov; 7(5):955-969. PubMed ID: 28157484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation.
    Balboa D; Weltner J; Eurola S; Trokovic R; Wartiovaara K; Otonkoski T
    Stem Cell Reports; 2015 Sep; 5(3):448-59. PubMed ID: 26352799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Editing of Ascl1 Gene in Neural Stem Cells by Optogenetics.
    Lo CL; Choudhury SR; Irudayaraj J; Zhou FC
    Sci Rep; 2017 Feb; 7():42047. PubMed ID: 28181538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation.
    Nihongaki Y; Furuhata Y; Otabe T; Hasegawa S; Yoshimoto K; Sato M
    Nat Methods; 2017 Oct; 14(10):963-966. PubMed ID: 28892089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein.
    Hoffmann MD; Mathony J; Upmeier Zu Belzen J; Harteveld Z; Aschenbrenner S; Stengl C; Grimm D; Correia BE; Eils R; Niopek D
    Nucleic Acids Res; 2021 Mar; 49(5):e29. PubMed ID: 33330940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the dCas9-KRAB system to repress gene expression in hiPSC-derived
    Li A; Cartwright S; Yu A; Ho SM; Schrode N; Deans PJM; Matos MR; Garcia MF; Townsley KG; Zhang B; Brennand KJ
    STAR Protoc; 2021 Jun; 2(2):100580. PubMed ID: 34151300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons.
    Aravantinou-Fatorou K; Ortega F; Chroni-Tzartou D; Antoniou N; Poulopoulou C; Politis PK; Berninger B; Matsas R; Thomaidou D
    Stem Cell Reports; 2015 Sep; 5(3):405-18. PubMed ID: 26321141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells.
    Black JB; Adler AF; Wang HG; D'Ippolito AM; Hutchinson HA; Reddy TE; Pitt GS; Leong KW; Gersbach CA
    Cell Stem Cell; 2016 Sep; 19(3):406-14. PubMed ID: 27524438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells.
    Ma D; Peng S; Xie Z
    Nat Commun; 2016 Oct; 7():13056. PubMed ID: 27694915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.
    Ochoa-Fernandez R; Samodelov SL; Brandl SM; Wehinger E; Müller K; Weber W; Zurbriggen MD
    Methods Mol Biol; 2016; 1408():125-39. PubMed ID: 26965120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clinical potential of optogenetic interrogation of pathogenesis.
    Gao TT; Oh TJ; Mehta K; Huang YA; Camp T; Fan H; Han JW; Barnes CM; Zhang K
    Clin Transl Med; 2023 May; 13(5):e1243. PubMed ID: 37132114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.