BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

914 related articles for article (PubMed ID: 29967174)

  • 1. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-driven chromatin organization during interphase: Compaction, segregation, and entanglement suppression.
    Chan B; Rubinstein M
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2401494121. PubMed ID: 38753513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two independent modes of chromatin organization revealed by cohesin removal.
    Schwarzer W; Abdennur N; Goloborodko A; Pekowska A; Fudenberg G; Loe-Mie Y; Fonseca NA; Huber W; Haering CH; Mirny L; Spitz F
    Nature; 2017 Nov; 551(7678):51-56. PubMed ID: 29094699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Chromosomal Domains by Loop Extrusion.
    Fudenberg G; Imakaev M; Lu C; Goloborodko A; Abdennur N; Mirny LA
    Cell Rep; 2016 May; 15(9):2038-49. PubMed ID: 27210764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures.
    Hao X; Parmar JJ; Lelandais B; Aristov A; Ouyang W; Weber C; Zimmer C
    Genome Biol; 2021 May; 22(1):150. PubMed ID: 33975635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila.
    Matthews NE; White R
    Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes.
    Racko D; Benedetti F; Dorier J; Stasiak A
    Nucleic Acids Res; 2018 Feb; 46(4):1648-1660. PubMed ID: 29140466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multiscale effects of polycomb mechanisms on 3D chromatin folding.
    Cheutin T; Cavalli G
    Crit Rev Biochem Mol Biol; 2019 Oct; 54(5):399-417. PubMed ID: 31698957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
    Hanssen LLP; Kassouf MT; Oudelaar AM; Biggs D; Preece C; Downes DJ; Gosden M; Sharpe JA; Sloane-Stanley JA; Hughes JR; Davies B; Higgs DR
    Nat Cell Biol; 2017 Aug; 19(8):952-961. PubMed ID: 28737770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization.
    Rowley MJ; Lyu X; Rana V; Ando-Kuri M; Karns R; Bosco G; Corces VG
    Cell Rep; 2019 Mar; 26(11):2890-2903.e3. PubMed ID: 30865881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
    Rowley MJ; Nichols MH; Lyu X; Ando-Kuri M; Rivera ISM; Hermetz K; Wang P; Ruan Y; Corces VG
    Mol Cell; 2017 Sep; 67(5):837-852.e7. PubMed ID: 28826674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription shapes 3D chromatin organization by interacting with loop extrusion.
    Banigan EJ; Tang W; van den Berg AA; Stocsits RR; Wutz G; Brandão HB; Busslinger GA; Peters JM; Mirny LA
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2210480120. PubMed ID: 36897969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome organization by one-sided and two-sided loop extrusion.
    Banigan EJ; van den Berg AA; Brandão HB; Marko JF; Mirny LA
    Elife; 2020 Apr; 9():. PubMed ID: 32250245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion.
    Davidson IF; Barth R; Zaczek M; van der Torre J; Tang W; Nagasaka K; Janissen R; Kerssemakers J; Wutz G; Dekker C; Peters JM
    Nature; 2023 Apr; 616(7958):822-827. PubMed ID: 37076620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TADs and Their Borders: Free Movement or Building a Wall?
    Chang LH; Ghosh S; Noordermeer D
    J Mol Biol; 2020 Feb; 432(3):643-652. PubMed ID: 31887284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.
    Haarhuis JHI; van der Weide RH; Blomen VA; Yáñez-Cuna JO; Amendola M; van Ruiten MS; Krijger PHL; Teunissen H; Medema RH; van Steensel B; Brummelkamp TR; de Wit E; Rowland BD
    Cell; 2017 May; 169(4):693-707.e14. PubMed ID: 28475897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.