These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29967394)

  • 1. Polyyne formation via skeletal rearrangement induced by atomic manipulation.
    Pavliček N; Gawel P; Kohn DR; Majzik Z; Xiong Y; Meyer G; Anderson HL; Gross L
    Nat Chem; 2018 Aug; 10(8):853-858. PubMed ID: 29967394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyyne synthesis using carbene/carbenoid rearrangements.
    Chalifoux WA; Tykwinski RR
    Chem Rec; 2006; 6(4):169-82. PubMed ID: 16902994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fritsch-Buttenberg-Wiechell rearrangement: modern applications for an old reaction.
    Jahnke E; Tykwinski RR
    Chem Commun (Camb); 2010 May; 46(19):3235-49. PubMed ID: 20393642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkyne migration in alkylidene carbenoid species: a new method of polyyne synthesis.
    Eisler S; Chahal N; McDonald R; Tykwinski RR
    Chemistry; 2003 Jun; 9(11):2542-50. PubMed ID: 12794896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response.
    Eisler S; Slepkov AD; Elliott E; Luu T; McDonald R; Hegmann FA; Tykwinski RR
    J Am Chem Soc; 2005 Mar; 127(8):2666-76. PubMed ID: 15725024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bond-Scission-Induced Structural Transformation from Cumulene to Diyne Moiety and Formation of Semiconducting Organometallic Polyyne.
    Yu X; Li X; Lin H; Liu M; Cai L; Qiu X; Yang D; Fan X; Qiu X; Xu W
    J Am Chem Soc; 2020 May; 142(18):8085-8089. PubMed ID: 32321241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyyne Rotaxanes: Stabilization by Encapsulation.
    Movsisyan LD; Franz M; Hampel F; Thompson AL; Tykwinski RR; Anderson HL
    J Am Chem Soc; 2016 Feb; 138(4):1366-76. PubMed ID: 26752712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot formation and derivatization of di- and triynes based on the Fritsch-Buttenberg-Wiechell rearrangement.
    Luu T; Morisaki Y; Cunningham N; Tykwinski RR
    J Org Chem; 2007 Dec; 72(25):9622-9. PubMed ID: 17999532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fritsch-Buttenberg-Wiechell rearrangement of magnesium alkylidene carbenoids leading to the formation of alkynes.
    Kimura T; Sekiguchi K; Ando A; Imafuji A
    Beilstein J Org Chem; 2021; 17():1352-1359. PubMed ID: 34136014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fritsch-Buttenberg-Wiechell rearrangement in the aliphatic series.
    Rezaei H; Yamanoi S; Chemla F; Normant JF
    Org Lett; 2000 Feb; 2(4):419-21. PubMed ID: 10814340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of unsymmetrically substituted 1,3-butadiynes and 1,3,5-hexatriynes via alkylidene carbenoid rearrangements.
    Shi Shun AL; Chernick ET; Eisler S; Tykwinski RR
    J Org Chem; 2003 Feb; 68(4):1339-47. PubMed ID: 12585873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbanionic rearrangements of halomethylenecyclobutanes. Stereochemistry of the migrating group.
    Du Z; Erickson KL
    J Org Chem; 2010 Nov; 75(21):7129-40. PubMed ID: 20925362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-surface synthesis and characterization of polyynic carbon chains.
    Gao W; Zheng W; Sun L; Kang F; Zhou Z; Xu W
    Natl Sci Rev; 2024 Mar; 11(3):nwae031. PubMed ID: 38410826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disproof of the Structures and Biosynthesis of Ergoynes, Gs-Polyyne-l-Ergothioneine Cycloadducts from
    Kawahara D; Kai K
    J Org Chem; 2024 Apr; 89(8):5715-5725. PubMed ID: 38593068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron-Mediated Carbon-Carbon Bond Cleavage and Rearrangement of Benzene Forming the Borepinyl Radical and Borole Derivatives.
    Jian J; Wu X; Chen M; Zhou M
    J Am Chem Soc; 2020 Jun; 142(22):10079-10086. PubMed ID: 32383858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and stability of a homologous series of triynol natural products and their analogues.
    Luu T; Tykwinski RR
    J Org Chem; 2006 Nov; 71(23):8982-5. PubMed ID: 17081037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic aspects of alkyne migration in alkylidene carbenoid rearrangements.
    Bichler P; Chalifoux WA; Eisler S; Shi Shun AL; Chernick ET; Tykwinski RR
    Org Lett; 2009 Feb; 11(3):519-22. PubMed ID: 19128149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible Bergman cyclization by atomic manipulation.
    Schuler B; Fatayer S; Mohn F; Moll N; Pavliček N; Meyer G; Peña D; Gross L
    Nat Chem; 2016 Mar; 8(3):220-4. PubMed ID: 26892552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced reaction of hydrogen-end-capped polyynes with iodine molecules.
    Wada Y; Wakabayashi T; Kato T
    J Phys Chem B; 2011 Jul; 115(26):8439-45. PubMed ID: 21627113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of naturally occurring acetylenes via an alkylidene carbenoid rearrangement.
    Shun AL; Tykwinski RR
    J Org Chem; 2003 Aug; 68(17):6810-3. PubMed ID: 12919055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.