BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29967395)

  • 1. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue.
    Drienovská I; Mayer C; Dulson C; Roelfes G
    Nat Chem; 2018 Sep; 10(9):946-952. PubMed ID: 29967395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Evolution of a Designer Enzyme Featuring an Unnatural Catalytic Amino Acid.
    Mayer C; Dulson C; Reddem E; Thunnissen AWH; Roelfes G
    Angew Chem Int Ed Engl; 2019 Feb; 58(7):2083-2087. PubMed ID: 30575260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation.
    Rashidian M; Mahmoodi MM; Shah R; Dozier JK; Wagner CR; Distefano MD
    Bioconjug Chem; 2013 Mar; 24(3):333-42. PubMed ID: 23425124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New organocatalyst scaffolds with high activity in promoting hydrazone and oxime formation at neutral pH.
    Larsen D; Pittelkow M; Karmakar S; Kool ET
    Org Lett; 2015 Jan; 17(2):274-7. PubMed ID: 25545888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide-binding sites of the heterodimeric LmrCD ABC-multidrug transporter of Lactococcus lactis are asymmetric.
    Lubelski J; van Merkerk R; Konings WN; Driessen AJ
    Biochemistry; 2006 Jan; 45(2):648-56. PubMed ID: 16401093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of ortho proton donors in catalysis of hydrazone formation.
    Crisalli P; Kool ET
    Org Lett; 2013 Apr; 15(7):1646-9. PubMed ID: 23477719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the mechanism and catalysis of oxime coupling chemistry at physiological pH.
    Wang S; Gurav D; Oommen OP; Varghese OP
    Chemistry; 2015 Apr; 21(15):5980-5. PubMed ID: 25737419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-soluble organocatalysts for hydrazone and oxime formation.
    Crisalli P; Kool ET
    J Org Chem; 2013 Feb; 78(3):1184-9. PubMed ID: 23289546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis.
    Chadha N; Tiwari AK; Kumar V; Lal S; Milton MD; Mishra AK
    J Biomol Struct Dyn; 2015; 33(5):978-90. PubMed ID: 24805972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling.
    Dirksen A; Dawson PE
    Bioconjug Chem; 2008 Dec; 19(12):2543-8. PubMed ID: 19053314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Artificial Heme Enzyme for Cyclopropanation Reactions.
    Villarino L; Splan KE; Reddem E; Alonso-Cotchico L; Gutiérrez de Souza C; Lledós A; Maréchal JD; Thunnissen AWH; Roelfes G
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7785-7789. PubMed ID: 29719099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron catalysis in a designer enzyme.
    Longwitz L; Leveson-Gower RB; Rozeboom HJ; Thunnissen AWH; Roelfes G
    Nature; 2024 May; 629(8013):824-829. PubMed ID: 38720081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live cell labeling of native intracellular bacterial receptors using aniline-catalyzed oxime ligation.
    Rayo J; Amara N; Krief P; Meijler MM
    J Am Chem Soc; 2011 May; 133(19):7469-75. PubMed ID: 21513325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ABC transporter with a secondary-active multidrug translocator domain.
    Venter H; Shilling RA; Velamakanni S; Balakrishnan L; Van Veen HW
    Nature; 2003 Dec; 426(6968):866-70. PubMed ID: 14685244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry.
    Dirksen A; Dirksen S; Hackeng TM; Dawson PE
    J Am Chem Soc; 2006 Dec; 128(49):15602-3. PubMed ID: 17147365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A metal ion regulated artificial metalloenzyme.
    Bersellini M; Roelfes G
    Dalton Trans; 2017 Mar; 46(13):4325-4330. PubMed ID: 28281708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical role of a carboxylate in proton conduction by the ATP-binding cassette multidrug transporter LmrA.
    Shilling R; Federici L; Walas F; Venter H; Velamakanni S; Woebking B; Balakrishnan L; Luisi B; van Veen HW
    FASEB J; 2005 Oct; 19(12):1698-700. PubMed ID: 16040836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone NMR resonance assignments of the nucleotide binding domain of the ABC multidrug transporter LmrA from Lactococcus lactis in its ADP-bound state.
    Hellmich UA; Duchardt-Ferner E; Glaubitz C; Wöhnert J
    Biomol NMR Assign; 2012 Apr; 6(1):69-73. PubMed ID: 21786024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.