These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An algorithm for designing minimal microbial communities with desired metabolic capacities. Eng A; Borenstein E Bioinformatics; 2016 Jul; 32(13):2008-16. PubMed ID: 27153571 [TBL] [Abstract][Full Text] [Related]
4. Mackinac: a bridge between ModelSEED and COBRApy to generate and analyze genome-scale metabolic models. Mundy M; Mendes-Soares H; Chia N Bioinformatics; 2017 Aug; 33(15):2416-2418. PubMed ID: 28379466 [TBL] [Abstract][Full Text] [Related]
5. MinReact: a systematic approach for identifying minimal metabolic networks. Sambamoorthy G; Raman K Bioinformatics; 2020 Aug; 36(15):4309-4315. PubMed ID: 32407533 [TBL] [Abstract][Full Text] [Related]
6. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Pratapa A; Balachandran S; Raman K Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504 [TBL] [Abstract][Full Text] [Related]
7. Computing Elementary Flux Modes Involving a Set of Target Reactions. David L; Bockmayr A IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1099-107. PubMed ID: 26357047 [TBL] [Abstract][Full Text] [Related]
8. A strategy to detect metabolic changes induced by exposure to chemicals from large sets of condition-specific metabolic models computed with enumeration techniques. Fresnais L; Perin O; Riu A; Grall R; Ott A; Fromenty B; Gallardo JC; Stingl M; Frainay C; Jourdan F; Poupin N BMC Bioinformatics; 2024 Jul; 25(1):234. PubMed ID: 38992584 [TBL] [Abstract][Full Text] [Related]
9. DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks. Rodríguez-Mier P; Poupin N; de Blasio C; Le Cam L; Jourdan F PLoS Comput Biol; 2021 Feb; 17(2):e1008730. PubMed ID: 33571201 [TBL] [Abstract][Full Text] [Related]
11. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification. Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426 [TBL] [Abstract][Full Text] [Related]
13. A depth-first search algorithm to compute elementary flux modes by linear programming. Quek LE; Nielsen LK BMC Syst Biol; 2014 Jul; 8():94. PubMed ID: 25074068 [TBL] [Abstract][Full Text] [Related]
14. RevEcoR: an R package for the reverse ecology analysis of microbiomes. Cao Y; Wang Y; Zheng X; Li F; Bo X BMC Bioinformatics; 2016 Jul; 17(1):294. PubMed ID: 27473172 [TBL] [Abstract][Full Text] [Related]
15. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation. Levy R; Carr R; Kreimer A; Freilich S; Borenstein E BMC Bioinformatics; 2015 May; 16(1):164. PubMed ID: 25980407 [TBL] [Abstract][Full Text] [Related]
18. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods. Oyetunde T; Zhang M; Chen Y; Tang Y; Lo C Bioinformatics; 2017 Feb; 33(4):608-611. PubMed ID: 27797784 [TBL] [Abstract][Full Text] [Related]
19. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks. Röhl A; Bockmayr A BMC Bioinformatics; 2017 Jan; 18(1):2. PubMed ID: 28049424 [TBL] [Abstract][Full Text] [Related]
20. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Zimmermann J; Kaleta C; Waschina S Genome Biol; 2021 Mar; 22(1):81. PubMed ID: 33691770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]