BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29967471)

  • 1. Enumerating all possible biosynthetic pathways in metabolic networks.
    Ravikrishnan A; Nasre M; Raman K
    Sci Rep; 2018 Jul; 8(1):9932. PubMed ID: 29967471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks.
    Acuña V; Milreu PV; Cottret L; Marchetti-Spaccamela A; Stougie L; Sagot MF
    Bioinformatics; 2012 Oct; 28(19):2474-83. PubMed ID: 22782547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm for designing minimal microbial communities with desired metabolic capacities.
    Eng A; Borenstein E
    Bioinformatics; 2016 Jul; 32(13):2008-16. PubMed ID: 27153571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mackinac: a bridge between ModelSEED and COBRApy to generate and analyze genome-scale metabolic models.
    Mundy M; Mendes-Soares H; Chia N
    Bioinformatics; 2017 Aug; 33(15):2416-2418. PubMed ID: 28379466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MinReact: a systematic approach for identifying minimal metabolic networks.
    Sambamoorthy G; Raman K
    Bioinformatics; 2020 Aug; 36(15):4309-4315. PubMed ID: 32407533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing Elementary Flux Modes Involving a Set of Target Reactions.
    David L; Bockmayr A
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1099-107. PubMed ID: 26357047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks.
    Rodríguez-Mier P; Poupin N; de Blasio C; Le Cam L; Jourdan F
    PLoS Comput Biol; 2021 Feb; 17(2):e1008730. PubMed ID: 33571201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PyBEL: a computational framework for Biological Expression Language.
    Hoyt CT; Konotopez A; Ebeling C; Wren J
    Bioinformatics; 2018 Feb; 34(4):703-704. PubMed ID: 29048466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring branching pathways in genome-scale metabolic networks.
    Pitkänen E; Jouhten P; Rousu J
    BMC Syst Biol; 2009 Oct; 3():103. PubMed ID: 19874610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A depth-first search algorithm to compute elementary flux modes by linear programming.
    Quek LE; Nielsen LK
    BMC Syst Biol; 2014 Jul; 8():94. PubMed ID: 25074068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RevEcoR: an R package for the reverse ecology analysis of microbiomes.
    Cao Y; Wang Y; Zheng X; Li F; Bo X
    BMC Bioinformatics; 2016 Jul; 17(1):294. PubMed ID: 27473172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.
    Levy R; Carr R; Kreimer A; Freilich S; Borenstein E
    BMC Bioinformatics; 2015 May; 16(1):164. PubMed ID: 25980407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks.
    Gerstl MP; Jungreuthmayer C; Zanghellini J
    Bioinformatics; 2015 Jul; 31(13):2232-4. PubMed ID: 25701571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting novel metabolic pathways through subgraph mining.
    Sankar A; Ranu S; Raman K
    Bioinformatics; 2017 Dec; 33(24):3955-3963. PubMed ID: 28961716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flux tope analysis: studying the coordination of reaction directions in metabolic networks.
    Gerstl MP; Müller S; Regensburger G; Zanghellini J
    Bioinformatics; 2019 Jan; 35(2):266-273. PubMed ID: 30649351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.
    Oyetunde T; Zhang M; Chen Y; Tang Y; Lo C
    Bioinformatics; 2017 Feb; 33(4):608-611. PubMed ID: 27797784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models.
    Zimmermann J; Kaleta C; Waschina S
    Genome Biol; 2021 Mar; 22(1):81. PubMed ID: 33691770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
    Röhl A; Bockmayr A
    BMC Bioinformatics; 2017 Jan; 18(1):2. PubMed ID: 28049424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.