BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29967542)

  • 1. Mechanism of parkin activation by phosphorylation.
    Sauvé V; Sung G; Soya N; Kozlov G; Blaimschein N; Miotto LS; Trempe JF; Lukacs GL; Gehring K
    Nat Struct Mol Biol; 2018 Jul; 25(7):623-630. PubMed ID: 29967542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Ubl/ubiquitin switch in the activation of Parkin.
    Sauvé V; Lilov A; Seirafi M; Vranas M; Rasool S; Kozlov G; Sprules T; Wang J; Trempe JF; Gehring K
    EMBO J; 2015 Oct; 34(20):2492-505. PubMed ID: 26254305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of parkin activation by PINK1.
    Gladkova C; Maslen SL; Skehel JM; Komander D
    Nature; 2018 Jul; 559(7714):410-414. PubMed ID: 29995846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of phospho-ubiquitin-induced PARKIN activation.
    Wauer T; Simicek M; Schubert A; Komander D
    Nature; 2015 Aug; 524(7565):370-4. PubMed ID: 26161729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation.
    Condos TE; Dunkerley KM; Freeman EA; Barber KR; Aguirre JD; Chaugule VK; Xiao Y; Konermann L; Walden H; Shaw GS
    EMBO J; 2018 Dec; 37(23):. PubMed ID: 30446597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity.
    Ham SJ; Lee SY; Song S; Chung JR; Choi S; Chung J
    J Biol Chem; 2016 Jan; 291(4):1803-1816. PubMed ID: 26631732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.
    Aguirre JD; Dunkerley KM; Mercier P; Shaw GS
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):298-303. PubMed ID: 28007983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.
    Caulfield TR; Fiesel FC; Moussaud-Lamodière EL; Dourado DF; Flores SC; Springer W
    PLoS Comput Biol; 2014 Nov; 10(11):e1003935. PubMed ID: 25375667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of parkin reveals mechanisms for ubiquitin ligase activation.
    Trempe JF; Sauvé V; Grenier K; Seirafi M; Tang MY; Ménade M; Al-Abdul-Wahid S; Krett J; Wong K; Kozlov G; Nagar B; Fon EA; Gehring K
    Science; 2013 Jun; 340(6139):1451-5. PubMed ID: 23661642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the E3 ubiquitin ligase Parkin.
    Caulfield TR; Fiesel FC; Springer W
    Biochem Soc Trans; 2015 Apr; 43(2):269-74. PubMed ID: 25849928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of altered phosphorylation on loss of function of juvenile Parkinsonism-associated genetic variants of the E3 ligase parkin.
    Aguirre JD; Dunkerley KM; Lam R; Rusal M; Shaw GS
    J Biol Chem; 2018 Apr; 293(17):6337-6348. PubMed ID: 29530980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation.
    Tang MY; Vranas M; Krahn AI; Pundlik S; Trempe JF; Fon EA
    Nat Commun; 2017 Mar; 8():14697. PubMed ID: 28276439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the second phosphoubiquitin-binding site in parkin.
    Fakih R; Sauvé V; Gehring K
    J Biol Chem; 2022 Jul; 298(7):102114. PubMed ID: 35690145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity.
    Kazlauskaite A; Kelly V; Johnson C; Baillie C; Hastie CJ; Peggie M; Macartney T; Woodroof HI; Alessi DR; Pedrioli PG; Muqit MM
    Open Biol; 2014 Mar; 4(3):130213. PubMed ID: 24647965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PINK1 autophosphorylation is required for ubiquitin recognition.
    Rasool S; Soya N; Truong L; Croteau N; Lukacs GL; Trempe JF
    EMBO Rep; 2018 Apr; 19(4):. PubMed ID: 29475881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis.
    Kumar A; Aguirre JD; Condos TE; Martinez-Torres RJ; Chaugule VK; Toth R; Sundaramoorthy R; Mercier P; Knebel A; Spratt DE; Barber KR; Shaw GS; Walden H
    EMBO J; 2015 Oct; 34(20):2506-21. PubMed ID: 26254304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65.
    Kazlauskaite A; Kondapalli C; Gourlay R; Campbell DG; Ritorto MS; Hofmann K; Alessi DR; Knebel A; Trost M; Muqit MM
    Biochem J; 2014 May; 460(1):127-39. PubMed ID: 24660806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for feedforward control in the PINK1/Parkin pathway.
    Sauvé V; Sung G; MacDougall EJ; Kozlov G; Saran A; Fakih R; Fon EA; Gehring K
    EMBO J; 2022 Jun; 41(12):e109460. PubMed ID: 35491809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.
    Ordureau A; Heo JM; Duda DM; Paulo JA; Olszewski JL; Yanishevski D; Rinehart J; Schulman BA; Harper JW
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6637-42. PubMed ID: 25969509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.
    Kazlauskaite A; Martínez-Torres RJ; Wilkie S; Kumar A; Peltier J; Gonzalez A; Johnson C; Zhang J; Hope AG; Peggie M; Trost M; van Aalten DM; Alessi DR; Prescott AR; Knebel A; Walden H; Muqit MM
    EMBO Rep; 2015 Aug; 16(8):939-54. PubMed ID: 26116755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.