These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29967652)

  • 1. A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics.
    Zhibin S; Tianyu M; Chao N; Yijun N
    Appl Bionics Biomech; 2018; 2018():2719631. PubMed ID: 29967652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Analysis and Motion Capture System Utilization Method for Standardization Evaluation of Tracking Objectivity of 6-DOF Arm Structure for Rehabilitation Training Exercise Therapy Robot.
    Seol J; Yoon K; Kim KG
    Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot.
    Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F
    Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mirror-type rehabilitation training with dynamic adjustment and assistance for shoulder joint].
    Chen S; Yan Y; Xu G; Gao X; Huang K; Tai C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):351-360. PubMed ID: 33913296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.
    Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R
    J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion.
    Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation.
    Koo D; Chang PH; Sohn MK; Shin JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975505. PubMed ID: 22275701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements.
    Nunes WM; Rodrigues LA; Oliveira LP; Ribeiro JF; Carvalho JC; Gonçalves RS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975503. PubMed ID: 22275699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Evaluation of Passive Shoulder Joint Tracking Module for Upper-Limb Rehabilitation Robots.
    Lee KS; Park JH; Beom J; Park HS
    Front Neurorobot; 2018; 12():38. PubMed ID: 30100871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-aided rehabilitation task design for inner shoulder muscles.
    Pei Y; Kim Y; Obinata G; Genda E; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3922-5. PubMed ID: 23366785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper-limb kinematic reconstruction during stroke robot-aided therapy.
    Papaleo E; Zollo L; Garcia-Aracil N; Badesa FJ; Morales R; Mazzoleni S; Sterzi S; Guglielmelli E
    Med Biol Eng Comput; 2015 Sep; 53(9):815-28. PubMed ID: 25861746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System.
    Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of robot-assisted training added to conventional rehabilitation in patients with humeral fracture early after surgical treatment: protocol of a randomised, controlled, multicentre trial.
    Nerz C; Schwickert L; Becker C; Studier-Fischer S; Müßig JA; Augat P
    Trials; 2017 Dec; 18(1):589. PubMed ID: 29212528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot-aided motion planning for knee joint rehabilitation with two robot-manipulators.
    Pei Y; Kim Y; Obinata G; Genda E; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2495-8. PubMed ID: 24110233
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.