BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29968098)

  • 1. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging.
    Abdala C; Ortmann AJ; Shera CA
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):493-510. PubMed ID: 29968098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear Mechanisms and Otoacoustic Emission Test Performance.
    Go NA; Stamper GC; Johnson TA
    Ear Hear; 2019; 40(2):401-417. PubMed ID: 29952805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults.
    Abdala C; Luo P; Shera CA
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):647-664. PubMed ID: 35804277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a joint reflection-distortion otoacoustic emission profile: Results in normal and impaired ears.
    Abdala C; Kalluri R
    J Acoust Soc Am; 2017 Aug; 142(2):812. PubMed ID: 28863614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops.
    Stiepan S; Shera CA; Abdala C
    Ear Hear; 2023 Nov-Dec 01; 44(6):1437-1450. PubMed ID: 37450653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observations of Distortion Product Otoacoustic Emission Components in Adults With Hearing Loss.
    Prieve BA; Thomas L; Long G; Talmadge C
    Ear Hear; 2020; 41(3):652-662. PubMed ID: 31569117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears.
    Schairer KS; Keefe DH
    J Acoust Soc Am; 2005 Feb; 117(2):818-32. PubMed ID: 15759702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears.
    Schairer KS; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2003 Aug; 114(2):944-66. PubMed ID: 12942975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
    Abdala C; Luo P; Guardia Y
    Trends Hear; 2019; 23():2331216519889226. PubMed ID: 31789131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2005 Jun; 117(6):3799-815. PubMed ID: 16018483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans.
    Rasetshwane DM; Bosen EC; Kopun JG; Neely ST
    J Acoust Soc Am; 2019 Dec; 146(6):4481. PubMed ID: 31893726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2008 Jul; 124(1):381-95. PubMed ID: 18646984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears.
    Schairer KS; Ellison JC; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2006 Aug; 120(2):901-14. PubMed ID: 16938978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation and aging of the human cochlea: a view through the DPOAE looking glass.
    Abdala C; Dhar S
    J Assoc Res Otolaryngol; 2012 Jun; 13(3):403-21. PubMed ID: 22476702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.