These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29968373)

  • 1. Nasal surgery handled by CFD tools.
    Sanmiguel-Rojas E; Burgos MA; Esteban-Ortega F
    Int J Numer Method Biomed Eng; 2018 Oct; 34(10):e3126. PubMed ID: 29968373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics (CFD), virtual rhinomanometry, and virtual surgery for neonatal congenital nasal pyriform aperture stenosis.
    Moreddu E; Meister L; Médale M; Nicollas R
    Int J Pediatr Otorhinolaryngol; 2024 Jul; 182():112025. PubMed ID: 38950452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
    Frank-Ito DO; Kimbell JS; Borojeni AAT; Garcia GJM; Rhee JS
    Clin Biomech (Bristol); 2019 Jan; 61():172-180. PubMed ID: 30594764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying patients who may benefit from inferior turbinate reduction using computer simulations.
    Hariri BM; Rhee JS; Garcia GJ
    Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CFD approach to understand nasoseptal perforations.
    Burgos MA; Sanmiguel-Rojas E; Rodríguez R; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2018 Sep; 275(9):2265-2272. PubMed ID: 30043077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DigBody
    Burgos MA; Sanmiguel-Rojas E; Singh N; Esteban-Ortega F
    Comput Biol Med; 2018 Jul; 98():118-125. PubMed ID: 29787939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New CFD tools to evaluate nasal airflow.
    Burgos MA; Sanmiguel-Rojas E; Del Pino C; Sevilla-García MA; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2017 Aug; 274(8):3121-3128. PubMed ID: 28547013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Surgery for the Nasal Airway: A Preliminary Report on Decision Support and Technology Acceptance.
    Vanhille DL; Garcia GJM; Asan O; Borojeni AAT; Frank-Ito DO; Kimbell JS; Pawar SS; Rhee JS
    JAMA Facial Plast Surg; 2018 Jan; 20(1):63-69. PubMed ID: 29049474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand
    Burgos MA; Sevilla García MA; Sanmiguel Rojas E; Del Pino C; Fernández Velez C; Piqueras F; Esteban Ortega F
    Acta Otorrinolaringol Esp (Engl Ed); 2018; 69(3):125-133. PubMed ID: 28923473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the nasal cycle with computational fluid dynamics.
    Patel RG; Garcia GJ; Frank-Ito DO; Kimbell JS; Rhee JS
    Otolaryngol Head Neck Surg; 2015 Feb; 152(2):353-60. PubMed ID: 25450411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Overview of Computational Fluid Dynamics Preoperative Analysis of the Nasal Airway.
    Xavier R; Menger DJ; de Carvalho HC; Spratley J
    Facial Plast Surg; 2021 Jun; 37(3):306-316. PubMed ID: 33556971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics.
    Patel TR; Li C; Krebs J; Zhao K; Malhotra P
    Int J Pediatr Otorhinolaryngol; 2018 Jun; 109():180-184. PubMed ID: 29728177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of computational fluid dynamics nasal airflow measurement to design septoplasty: a pilot study.
    Mahasittiwat V; Hemtiwakorn K; Pintavirooj C
    J Med Assoc Thai; 2013 Jan; 96 Suppl 1():S12-7. PubMed ID: 23724450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.
    Wakayama T; Suzuki M; Tanuma T
    PLoS One; 2016; 11(3):e0150951. PubMed ID: 26943335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking Chronic Otitis Media and Nasal Obstruction: A CFD Approach.
    Burgos MA; Pardo A; Rodríguez R; Rodríguez-Balbuena B; Castro D; Piqueras F; Esteban F
    Laryngoscope; 2022 Jun; 132(6):1224-1230. PubMed ID: 34585755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis.
    Wang T; Chen D; Wang PH; Chen J; Deng J
    Braz J Med Biol Res; 2016 Aug; 49(9):e5182. PubMed ID: 27533764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.