BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29968456)

  • 1. Transition States of Nanocrystal Thin Films during Ligand-Exchange Processes for Potential Applications in Wearable Sensors.
    Lee SW; Joh H; Seong M; Lee WS; Choi JH; Oh SJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25502-25510. PubMed ID: 29968456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Metallic and Insulating Nanocrystal Heterostructures to Fabricate Highly Sensitive and Solution Processed Strain Gauges for Wearable Sensors.
    Lee WS; Lee SW; Joh H; Seong M; Kim H; Kang MS; Cho KH; Sung YM; Oh SJ
    Small; 2017 Dec; 13(47):. PubMed ID: 29078023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the Charge Transport of Ag Nanocrystals for Highly Accurate, Wearable Temperature Sensors through All-Solution Processes.
    Joh H; Lee SW; Seong M; Lee WS; Oh SJ
    Small; 2017 Jun; 13(24):. PubMed ID: 28464442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Engineering of Metal and Semiconductor Nanocrystal Assemblies and Their Optical and Electronic Devices.
    Choi YC; Lee J; Ng JJ; Kagan CR
    Acc Chem Res; 2023 Jul; 56(13):1791-1802. PubMed ID: 37342079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergetic effects of ligand exchange and reduction process enhancing both electrical and optical properties of Ag nanocrystals for multifunctional transparent electrodes.
    Kang MS; Joh H; Kim H; Yun HW; Kim D; Woo HK; Lee WS; Hong SH; Oh SJ
    Nanoscale; 2018 Oct; 10(38):18415-18422. PubMed ID: 30256372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring.
    Kim I; Woo K; Zhong Z; Ko P; Jang Y; Jung M; Jo J; Kwon S; Lee SH; Lee S; Youn H; Moon J
    Nanoscale; 2018 May; 10(17):7890-7897. PubMed ID: 29560480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronically coupled nanocrystal superlattice films by in situ ligand exchange at the liquid-air interface.
    Dong A; Jiao Y; Milliron DJ
    ACS Nano; 2013 Dec; 7(12):10978-84. PubMed ID: 24252075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.
    Kim H; Lee SW; Joh H; Seong M; Lee WS; Kang MS; Pyo JB; Oh SJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1389-1398. PubMed ID: 29239175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Surface Chemistry of Silver Nanocrystals for Radio Frequency Circuit Applications.
    Oh H; Lee SW; Kim M; Lee WS; Seong M; Joh H; Allen MG; May GS; Bakir MS; Oh SJ
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37643-37650. PubMed ID: 30288975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible heartbeat sensor for wearable device.
    Kwak YH; Kim W; Park KB; Kim K; Seo S
    Biosens Bioelectron; 2017 Aug; 94():250-255. PubMed ID: 28285203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange.
    Vo DQ; Shin EW; Kim JS; Kim S
    Langmuir; 2010 Nov; 26(22):17435-43. PubMed ID: 20919702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids.
    Fafarman AT; Koh WK; Diroll BT; Kim DK; Ko DK; Oh SJ; Ye X; Doan-Nguyen V; Crump MR; Reifsnyder DC; Murray CB; Kagan CR
    J Am Chem Soc; 2011 Oct; 133(39):15753-61. PubMed ID: 21848336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing-Structure-Property Relationships in Laser-Annealed PbSe Nanocrystal Thin Films.
    Treml BE; Robbins AB; Whitham K; Smilgies DM; Thompson MO; Hanrath T
    ACS Nano; 2015; 9(4):4096-102. PubMed ID: 25787088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable sensors based on colloidal nanocrystals.
    Lee WS; Jeon S; Oh SJ
    Nano Converg; 2019 Apr; 6(1):10. PubMed ID: 30937630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ink-Lithography for Property Engineering and Patterning of Nanocrystal Thin Films.
    Ahn J; Jeon S; Woo HK; Bang J; Lee YM; Neuhaus SJ; Lee WS; Park T; Lee SY; Jung BK; Joh H; Seong M; Choi JH; Yoon HG; Kagan CR; Oh SJ
    ACS Nano; 2021 Oct; 15(10):15667-15675. PubMed ID: 34495639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices.
    Wang W; Zhang M; Pan Z; Biesold GM; Liang S; Rao H; Lin Z; Zhong X
    Chem Rev; 2022 Feb; 122(3):4091-4162. PubMed ID: 34968050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Conductivity in CZTS/Cu(2-x)Se Nanocrystal Thin Films: Growth of a Conductive Shell.
    Korala L; McGoffin JT; Prieto AL
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4911-7. PubMed ID: 26745286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newly observed temperature and surface ligand dependence of electron mobility in indium oxide nanocrystals solids.
    Pham HT; Jeong HD
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11660-7. PubMed ID: 25961112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Ligand Exchange of Ionic Ligand-Capped Amphiphilic Ag
    Sung Y; Kim HB; Kim JH; Noh Y; Yu J; Yang J; Kim TH; Oh J
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3853-3861. PubMed ID: 38207283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ink-lithographic fabrication of silver-nanocrystal-based multiaxial strain gauge sensors through the coffee-ring effect for voice recognition applications.
    Ahn J; Choi HJ; Bang J; Son G; Oh SJ
    Nano Converg; 2022 Oct; 9(1):46. PubMed ID: 36209342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.