These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29968457)

  • 21. Understanding Electron Transport in Disk-Shaped Triphenylene-Tris(naphthaleneimidazole)s through Structural Modification and Theoretical Investigation.
    Zhang Y; Hanifi DA; Fernández-Liencres MP; Klivansky LM; Ma B; Navarro A; Liu Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20010-20019. PubMed ID: 28534391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals.
    Querner C; Reiss P; Sadki S; Zagorska M; Pron A
    Phys Chem Chem Phys; 2005 Sep; 7(17):3204-9. PubMed ID: 16240033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films.
    Gudjonsdottir S; van der Stam W; Kirkwood N; Evers WH; Houtepen AJ
    J Am Chem Soc; 2018 May; 140(21):6582-6590. PubMed ID: 29718666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast Charge Transfer and Upconversion in Zinc β-Tetraaminophthalocyanine-Functionalized PbS Nanostructures Probed by Transient Absorption Spectroscopy.
    Lauth J; Grimaldi G; Kinge S; Houtepen AJ; Siebbeles LDA; Scheele M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14061-14065. PubMed ID: 28859243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement.
    Liu Y; Peard N; Grossman JC
    J Phys Chem Lett; 2019 Jul; 10(13):3756-3762. PubMed ID: 31185712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of structural behavior of nanocrystals in randomly packed films and long-range ordered superlattices by time-resolved small angle X-ray scattering.
    Lee B; Podsiadlo P; Rupich S; Talapin DV; Rajh T; Shevchenko EV
    J Am Chem Soc; 2009 Nov; 131(45):16386-8. PubMed ID: 19863066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of conjugated structure on electronic and transport properties in organic-inorganic hybrid superlattices Cd
    Li M; Li J; Zhang X; Wu D; Li M; Long M
    J Phys Condens Matter; 2022 May; 34(29):. PubMed ID: 35504273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals.
    Sytnyk M; Yakunin S; Schöfberger W; Lechner RT; Burian M; Ludescher L; Killilea NA; YousefiAmin A; Kriegner D; Stangl J; Groiss H; Heiss W
    ACS Nano; 2017 Feb; 11(2):1246-1256. PubMed ID: 28135069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Newly observed temperature and surface ligand dependence of electron mobility in indium oxide nanocrystals solids.
    Pham HT; Jeong HD
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11660-7. PubMed ID: 25961112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films.
    Urban JJ; Talapin DV; Shevchenko EV; Kagan CR; Murray CB
    Nat Mater; 2007 Feb; 6(2):115-21. PubMed ID: 17237786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.
    Reiss P; Couderc E; De Girolamo J; Pron A
    Nanoscale; 2011 Feb; 3(2):446-89. PubMed ID: 21152569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells.
    Bozyigit D; Lin WM; Yazdani N; Yarema O; Wood V
    Nat Commun; 2015 Jan; 6():6180. PubMed ID: 25625647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
    Poyser CL; Czerniuk T; Akimov A; Diroll BT; Gaulding EA; Salasyuk AS; Kent AJ; Yakovlev DR; Bayer M; Murray CB
    ACS Nano; 2016 Jan; 10(1):1163-9. PubMed ID: 26696021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring the Vibrational Density of States of Nanocrystal-Based Thin Films with Inelastic X-ray Scattering.
    Yazdani N; Nguyen-Thanh T; Yarema M; Lin WMM; Gao R; Yarema O; Bosak A; Wood V
    J Phys Chem Lett; 2018 Apr; 9(7):1561-1567. PubMed ID: 29518338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces.
    Lin WMM; Yarema M; Liu M; Sargent E; Wood V
    Chimia (Aarau); 2021 May; 75(5):398-413. PubMed ID: 34016234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas.
    Thimsen E; Johnson M; Zhang X; Wagner AJ; Mkhoyan KA; Kortshagen UR; Aydil ES
    Nat Commun; 2014 Dec; 5():5822. PubMed ID: 25524320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand coupling symmetry correlates with thermopower enhancement in small-molecule/nanocrystal hybrid materials.
    Lynch J; Kotiuga M; Doan-Nguyen VV; Queen WL; Forster JD; Schlitz RA; Murray CB; Neaton JB; Chabinyc ML; Urban JJ
    ACS Nano; 2014 Oct; 8(10):10528-36. PubMed ID: 25211028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.