These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29968583)

  • 1. Strained germanium nanowire optoelectronic devices for photonic-integrated circuits.
    Qi Z; Sun H; Luo M; Jung Y; Nam D
    J Phys Condens Matter; 2018 Aug; 30(33):334004. PubMed ID: 29968583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-threshold optically pumped lasing in highly strained germanium nanowires.
    Bao S; Kim D; Onwukaeme C; Gupta S; Saraswat K; Lee KH; Kim Y; Min D; Jung Y; Qiu H; Wang H; Fitzgerald EA; Tan CS; Nam D
    Nat Commun; 2017 Nov; 8(1):1845. PubMed ID: 29184064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Bandgap Light Emission from Strained Germanium Nanowires Coupled with High-Q Nanophotonic Cavities.
    Petykiewicz J; Nam D; Sukhdeo DS; Gupta S; Buckley S; Piggott AY; Vučković J; Saraswat KC
    Nano Lett; 2016 Apr; 16(4):2168-73. PubMed ID: 26907359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile strained germanium nanowires measured by photocurrent spectroscopy and X-ray microdiffraction.
    Guilloy K; Pauc N; Gassenq A; Gentile P; Tardif S; Rieutord F; Calvo V
    Nano Lett; 2015 Apr; 15(4):2429-33. PubMed ID: 25759950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneously-Grown Tunable Tensile Strained Germanium on Silicon for Photonic Devices.
    Clavel M; Saladukha D; Goley PS; Ochalski TJ; Murphy-Armando F; Bodnar RJ; Hudait MK
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26470-81. PubMed ID: 26561963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced direct bandgap emission in germanium by micromechanical strain engineering.
    Lim PH; Park S; Ishikawa Y; Wada K
    Opt Express; 2009 Aug; 17(18):16358-65. PubMed ID: 19724635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell Germanium/Germanium-Tin Nanowires Exhibiting Room-Temperature Direct- and Indirect-Gap Photoluminescence.
    Meng AC; Fenrich CS; Braun MR; McVittie JP; Marshall AF; Harris JS; McIntyre PC
    Nano Lett; 2016 Dec; 16(12):7521-7529. PubMed ID: 27802056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes.
    Sánchez-Pérez JR; Boztug C; Chen F; Sudradjat FF; Paskiewicz DM; Jacobson RB; Lagally MG; Paiella R
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):18893-8. PubMed ID: 22084063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-wire bandgap engineering via a magnetic-pulled CVD approach and optoelectronic applications of one-dimensional nanostructures.
    Shen X; Li P; Guo P; Yu KM
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35816940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.
    Sukhdeo DS; Nam D; Kang JH; Brongersma ML; Saraswat KC
    Opt Express; 2015 Jun; 23(13):16740-9. PubMed ID: 26191686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanowire Waveguides and Lasers: Advances and Opportunities in Photonic Circuits.
    Gu Z; Song Q; Xiao S
    Front Chem; 2020; 8():613504. PubMed ID: 33490039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verifying the band gap narrowing in tensile strained Ge nanowires by electrical means.
    Bartmann MG; Sistani M; Glassner S; Salem B; Baron T; Gentile P; Smoliner J; Lugstein A
    Nanotechnology; 2021 Apr; 32(14):145711. PubMed ID: 33276352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong enhancement of direct transition photoluminescence at room temperature for highly tensile-strained Ge decorated using 5 nm gold nanoparticles.
    Dushaq G; Paredes B; Rasras M
    Nanotechnology; 2020 Jul; 31(31):315201. PubMed ID: 32303009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires.
    Zhu Z; Song Y; Chen Q; Zhang Z; Zhang L; Li Y; Wang S
    Nanoscale Res Lett; 2017 Dec; 12(1):472. PubMed ID: 28759987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MoTe
    Bie YQ; Grosso G; Heuck M; Furchi MM; Cao Y; Zheng J; Bunandar D; Navarro-Moratalla E; Zhou L; Efetov DK; Taniguchi T; Watanabe K; Kong J; Englund D; Jarillo-Herrero P
    Nat Nanotechnol; 2017 Dec; 12(12):1124-1129. PubMed ID: 29209014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical gain in single tensile-strained germanium photonic wire.
    de Kersauson M; El Kurdi M; David S; Checoury X; Fishman G; Sauvage S; Jakomin R; Beaudoin G; Sagnes I; Boucaud P
    Opt Express; 2011 Sep; 19(19):17925-34. PubMed ID: 21935156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature.
    Kim H; Lee WJ; Farrell AC; Morales JSD; Senanayake P; Prikhodko SV; Ochalski TJ; Huffaker DL
    Nano Lett; 2017 Jun; 17(6):3465-3470. PubMed ID: 28535069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strained germanium thin film membrane on silicon substrate for optoelectronics.
    Nam D; Sukhdeo D; Roy A; Balram K; Cheng SL; Huang KC; Yuan Z; Brongersma M; Nishi Y; Miller D; Saraswat K
    Opt Express; 2011 Dec; 19(27):25866-72. PubMed ID: 22274174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Waveguide-Integrated Nanowire Laser.
    Bermúdez-Ureña E; Tutuncuoglu G; Cuerda J; Smith CL; Bravo-Abad J; Bozhevolnyi SI; Fontcuberta I Morral A; García-Vidal FJ; Quidant R
    Nano Lett; 2017 Feb; 17(2):747-754. PubMed ID: 28045536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.