BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29968704)

  • 1. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes.
    Li X; Shao J; Kim SK; Yao C; Wang J; Miao YR; Zheng Q; Sun P; Zhang R; Braun PV
    Nat Commun; 2018 Jul; 9(1):2578. PubMed ID: 29968704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
    Karthika P; Rajalakshmi N; Dhathathreyan KS
    Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.
    Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries-Level Energy.
    Li C; Li X; Yang Q; Sun P; Wu L; Nie B; Tian H; Wang Y; Wang C; Chen X; Shao J
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004957. PubMed ID: 34151539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-State Precursor Impregnation for Enhanced Capacitance in Hierarchical Flexible Poly(3,4-Ethylenedioxythiophene) Supercapacitors.
    Wang H; Yang H; Diao Y; Lu Y; Chrulski K; D'Arcy JM
    ACS Nano; 2021 Apr; 15(4):7799-7810. PubMed ID: 33819007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imperceptible Supercapacitors with High Area-Specific Capacitance.
    Ge J; Zhu M; Eisner E; Yin Y; Dong H; Karnaushenko DD; Karnaushenko D; Zhu F; Ma L; Schmidt OG
    Small; 2021 Jun; 17(24):e2101704. PubMed ID: 33977641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatom-doped Carbon Nanofibers for Flexible Supercapacitors.
    Liu R; Ma L; Mei J; Huang S; Yang S; Li E; Yuan G
    Chemistry; 2017 Feb; 23(11):2610-2618. PubMed ID: 28000323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.
    Yuksel R; Sarioba Z; Cirpan A; Hiralal P; Unalan HE
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15434-9. PubMed ID: 25127070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of multi-walled carbon nanotubes and conducting polymer on capacitance of mesoporous carbon electrode.
    Wang A; Cheng Y; Zhang H; Hou Y; Wang Y; Liu J
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7015-21. PubMed ID: 25924364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated Carbon Nanotube Fiber Fabric as a High-Performance Flexible Electrode for Solid-State Supercapacitors.
    Liang Y; Luo X; Weng W; Hu Z; Zhang Y; Xu W; Bi Z; Zhu M
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28433-28441. PubMed ID: 34114814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Based Robust and Flexible Solid-State Supercapacitor.
    De Silva T; Damery C; Alkhaldi R; Karunanithy R; Gallaba DH; Patil PD; Wasala M; Sivakumar P; Migone A; Talapatra S
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56004-56013. PubMed ID: 34792349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors.
    Ko WY; Chen YF; Lu KM; Lin KJ
    Sci Rep; 2016 Jan; 6():18887. PubMed ID: 26726724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling Electrode Spacing by Polystyrene Microsphere Spacers for Highly Stable and Flexible Transparent Supercapacitors.
    Chen J; Xiao W; Hu T; Chen P; Lan T; Li P; Li Y; Mi B; Ma Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5885-5891. PubMed ID: 31934746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.
    Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible and Wearable Fiber Microsupercapacitors Based on Carbon Nanotube-Agarose Gel Composite Electrodes.
    Kim SK; Koo HJ; Liu J; Braun PV
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19925-19933. PubMed ID: 28537375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Solid Supercapacitors of Novel Nanostructured Electrodes Outperform Most Supercapacitors.
    Cho S; Lim J; Seo Y
    ACS Omega; 2022 Oct; 7(42):37825-37833. PubMed ID: 36312342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.