These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29968761)

  • 41. The application of three-dimensional quantitative computed tomography to the maxillofacial skeleton.
    Maki K; Okano T; Morohashi T; Yamada S; Shibaski Y
    Dentomaxillofac Radiol; 1997 Jan; 26(1):39-44. PubMed ID: 9446989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.
    Zougrou IM; Katsikini M; Brzhezinskaya M; Pinakidou F; Papadopoulou L; Tsoukala E; Paloura EC
    Naturwissenschaften; 2016 Aug; 103(7-8):60. PubMed ID: 27379398
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectroscopic studies of the fish fossils (Cladocyclus gardneri and Vinctifer comptoni) from the Ipubi Formation of the Cretaceous Period.
    Sousa Filho FE; da Silva JH; Saraiva GD; Abagaro BTO; Barros OA; Saraiva AAF; Viana BC; Freire PTC
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():124-128. PubMed ID: 26745511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. X-ray diffraction and polarizing optical microscopy investigation of the structural organization of rabbit tibia.
    Bigi A; Cacchioli A; Fichera AM; Gabbi C; Koch MH; Ragionieri L; Ripamonti A; Roveri N
    J Biomed Mater Res; 1998 Aug; 41(2):289-95. PubMed ID: 9638534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.
    Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ
    J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visualizing mineralization processes and fossil anatomy using synchronous synchrotron X-ray fluorescence and X-ray diffraction mapping.
    Gueriau P; Réguer S; Leclercq N; Cupello C; Brito PM; Jauvion C; Morel S; Charbonnier S; Thiaudière D; Mocuta C
    J R Soc Interface; 2020 Aug; 17(169):20200216. PubMed ID: 32842887
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone hierarchical structure: spatial variation across length scales.
    Wittig NK; Birkedal H
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2022 Jun; 78(Pt 3 Pt 1):305-311. PubMed ID: 35695104
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A method for measuring the three-dimensional orientation of cortical canals with implications for comparative analysis of bone microstructure in vertebrates.
    Pratt IV; Cooper DML
    Micron; 2017 Jan; 92():32-38. PubMed ID: 27855318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.
    Xu N; Ye X; Wei D; Zhong J; Chen Y; Xu G; He D
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14952-63. PubMed ID: 25133309
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone mineral change during experimental calcination: an X-ray diffraction study.
    Galeano S; García-Lorenzo ML
    J Forensic Sci; 2014 Nov; 59(6):1602-6. PubMed ID: 24962811
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone.
    Zuo Q; Lu S; Du Z; Friis T; Yao J; Crawford R; Prasadam I; Xiao Y
    BMC Musculoskelet Disord; 2016 Aug; 17(1):367. PubMed ID: 27558702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils.
    Zuber M; Laaß M; Hamann E; Kretschmer S; Hauschke N; van de Kamp T; Baumbach T; Koenig T
    Sci Rep; 2017 Jan; 7():41413. PubMed ID: 28128302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
    Yamada S; Tadano S; Fukuda S
    J Biomech; 2014 Nov; 47(14):3482-7. PubMed ID: 25267574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Orientational mapping of minerals in Pierre shale using X-ray diffraction tensor tomography.
    Mürer FK; Madathiparambil AS; Tekseth KR; Di Michiel M; Cerasi P; Chattopadhyay B; Breiby DW
    IUCrJ; 2021 Sep; 8(Pt 5):747-756. PubMed ID: 34584736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia.
    Schneiders W; Reinstorf A; Biewener A; Serra A; Grass R; Kinscher M; Heineck J; Rehberg S; Zwipp H; Rammelt S
    J Orthop Res; 2009 Jan; 27(1):15-21. PubMed ID: 18634066
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cortical measurements of the tibia from high resolution peripheral quantitative computed tomography images: a comparison with synchrotron radiation micro-computed tomography.
    Ostertag A; Peyrin F; Fernandez S; Laredo JD; de Vernejoul MC; Chappard C
    Bone; 2014 Jun; 63():7-14. PubMed ID: 24582804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effects of cracks on the quantification of the cancellous bone fabric tensor in fossil and archaeological specimens: a simulation study.
    Bishop PJ; Clemente CJ; Hocknull SA; Barrett RS; Lloyd DG
    J Anat; 2017 Mar; 230(3):461-470. PubMed ID: 27896808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study.
    Shkarina S; Shkarin R; Weinhardt V; Melnik E; Vacun G; Kluger PJ; Loza K; Epple M; Ivlev SI; Baumbach T; Surmeneva MA; Surmenev RA
    Sci Rep; 2018 Jun; 8(1):8907. PubMed ID: 29891842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite.
    Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T
    Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray diffraction analysis of spontaneously draining calcinosis in scleroderma patients.
    Hsu VM; Emge T; Schlesinger N
    Scand J Rheumatol; 2017 Mar; 46(2):118-121. PubMed ID: 27682520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.