BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2996897)

  • 1. Analysis of modification-dependent structural alterations in the anticodon loop of Escherichia coli tRNAArg and their effects on the translation of MS2 RNA.
    Baumann U; Fischer W; Sprinzl M
    Eur J Biochem; 1985 Nov; 152(3):645-9. PubMed ID: 2996897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop.
    Seong BL; RajBhandary UL
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):334-8. PubMed ID: 3540960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli.
    Mandal N; Mangroo D; Dalluge JJ; McCloskey JA; Rajbhandary UL
    RNA; 1996 May; 2(5):473-82. PubMed ID: 8665414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiator tRNAs have a unique anticodon loop conformation.
    Wrede P; Woo NH; Rich A
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3289-93. PubMed ID: 386336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of the conformation of RNA from phage MS2 and 16S rRNA. Accessibility to nucleases S1 and SV specific to secondary structure and thermal stability].
    Grechko VV; Borisova OF; Sakharova NK; Timokhina GI; Kuznetsova NV
    Mol Biol (Mosk); 1987; 21(2):506-14. PubMed ID: 2439895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Dependence of the anticodon stem conformation of tRNA Trp on the anticodon loop structure].
    Beresten' SF; Kiselev LL
    Biokhimiia; 1981 Jul; 46(7):1331-4. PubMed ID: 6268199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence and structure of a methionine transfer RNA from mosquito mitochondria.
    Dubin DT; HsuChen CC
    Nucleic Acids Res; 1984 May; 12(10):4185-9. PubMed ID: 6328414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes.
    Grosjean H; Fiers W
    Gene; 1982 Jun; 18(3):199-209. PubMed ID: 6751939
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Han L; Marcus E; D'Silva S; Phizicky EM
    RNA; 2017 Mar; 23(3):406-419. PubMed ID: 28003514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the anticodon loop structure in yeast tRNA(Phe-Y) with single strand-specific nuclease S1.
    Marciniec T; Ciesiołka J; Krzyzosiak W
    Acta Biochim Pol; 1989; 36(2):123-30. PubMed ID: 2618244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage MS2 RNA: a correlation between the stability of the codon: anticodon interaction and the choice of code words.
    Grosjean H; Sankoff D; Jou WM; Fiers W; Cedergren RJ
    J Mol Evol; 1978 Dec; 12(2):113-9. PubMed ID: 368346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Nikonowicz EP
    Nucleic Acids Res; 2005; 33(22):6961-71. PubMed ID: 16377777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of the unique anticodon loop conformation of E.coli tRNAfMet.
    Wrede P; Rich A
    Nucleic Acids Res; 1979 Nov; 7(6):1457-67. PubMed ID: 41223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression.
    Steege DA
    Nucleic Acids Res; 1983 Jun; 11(11):3823-32. PubMed ID: 6344015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bases of the tRNA anticodon loop are independent by genetic criteria.
    Smith D; Breeden L; Farrell E; Yarus M
    Nucleic Acids Res; 1987 Jun; 15(11):4669-86. PubMed ID: 3295781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-transcriptional modification of the wobble nucleotide in anticodon-substituted yeast tRNAArgII after microinjection into Xenopus laevis oocytes.
    Fournier M; Haumont E; de Henau S; Gangloff J; Grosjean H
    Nucleic Acids Res; 1983 Feb; 11(3):707-18. PubMed ID: 6300762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does UGA suppressor tRNATrp from Escherichia coli have a unique CCA anticodon sequence?
    Delamarche C; Buckingham RH
    Eur J Biochem; 1985 Apr; 148(2):271-5. PubMed ID: 3886380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of transfer ribonucleic acid structures using cobra venom and S1 endonucleases.
    Auron PE; Weber LD; Rich A
    Biochemistry; 1982 Sep; 21(19):4700-6. PubMed ID: 6291588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.