BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29969018)

  • 21. Insights into the lower trophic transfer of silver ions than silver containing nanoparticles along an aquatic food chain.
    Xiao B; Yang R; Chen P; Yang J; Sun B; Wang K; Zhang T; Zhu L
    Sci Total Environ; 2022 Jan; 804():150228. PubMed ID: 34798747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fate of silver nanoparticles in authentic human saliva.
    Ngamchuea K; Batchelor-McAuley C; Compton RG
    Nanotoxicology; 2018 May; 12(4):305-311. PubMed ID: 29451053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Implications of Pony Lake Fulvic Acid for the Aggregation and Dissolution of Oppositely Charged Surface-Coated Silver Nanoparticles and Their Ecotoxicological Effects on Daphnia magna.
    Jung Y; Metreveli G; Park CB; Baik S; Schaumann GE
    Environ Sci Technol; 2018 Jan; 52(2):436-445. PubMed ID: 29258302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved toxicity study reveals the dynamic interactions between uncoated silver nanoparticles and bacteria.
    Dong F; Mohd Zaidi NF; Valsami-Jones E; Kreft JU
    Nanotoxicology; 2017 Jun; 11(5):637-646. PubMed ID: 28608745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dominant Role of Silver Ions in Silver Nanoparticle Toxicity to a Unicellular Alga: Evidence from Luminogen Imaging.
    Zhang L; Wang WX
    Environ Sci Technol; 2019 Jan; 53(1):494-502. PubMed ID: 30525502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differentiating Silver Nanoparticles and Ions in Medaka Larvae by Coupling Two Aggregation-Induced Emission Fluorophores.
    Yan N; He X; Tang BZ; Wang WX
    Environ Sci Technol; 2019 May; 53(10):5895-5905. PubMed ID: 31032615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.
    El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi
    Cueva C; Gil-Sánchez I; Tamargo A; Miralles B; Crespo J; Bartolomé B; Moreno-Arribas MV
    Food Chem Toxicol; 2019 Oct; 132():110657. PubMed ID: 31276746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment.
    Hao Z; Li F; Liu R; Zhou X; Mu Y; Sharma VK; Liu J; Jiang G
    Environ Sci Technol; 2021 Apr; 55(8):5569-5578. PubMed ID: 33683864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inter-transformation between silver nanoparticles and Ag
    Liu Y; Li C; Luo S; Wang X; Zhang Q; Wu H
    Ecotoxicology; 2021 Sep; 30(7):1376-1385. PubMed ID: 33068202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of light and Suwanee River Fulvic Acid on O
    Rong H; Garg S; Waite TD
    Environ Sci Technol; 2019 Jun; 53(12):6688-6698. PubMed ID: 31090416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag
    Yin Y; Han D; Tai C; Tan Z; Zhou X; Yu S; Liu J; Jiang G
    Environ Pollut; 2017 Jun; 225():66-73. PubMed ID: 28351007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme.
    Su CK; Liu HT; Hsia SC; Sun YC
    Anal Chem; 2014 Aug; 86(16):8267-74. PubMed ID: 25025651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the suitability of the OECD 29 guidance document to investigate the transformation and dissolution of silver nanoparticles in aqueous media.
    Wasmuth C; Rüdel H; Düring RA; Klawonn T
    Chemosphere; 2016 Feb; 144():2018-23. PubMed ID: 26580718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.
    Zhang Z; Yang X; Shen M; Yin Y; Liu J
    J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles.
    Fernando I; Zhou Y
    Chemosphere; 2019 Feb; 216():297-305. PubMed ID: 30384298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism.
    Giao NT; Limpiyakorn T; Kunapongkiti P; Thuptimdang P; Siripattanakul-Ratpukdi S
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9229-9240. PubMed ID: 28224336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions Between Silver Nanoparticles/Silver Ions and Liposomes: Evaluation of the Potential Passive Diffusion of Silver and Effects of Speciation.
    Guilleux C; Campbell PGC; Fortin C
    Arch Environ Contam Toxicol; 2018 Nov; 75(4):634-646. PubMed ID: 30238147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Tiered Experimental Approach for Characterization and Silver Release of Silver-Containing Wound Dressings.
    Xu L; Bai R; Cheng X; Shao A; Chen L; Qu S; Chen C
    J Biomed Nanotechnol; 2018 Mar; 14(3):564-574. PubMed ID: 29663928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freezing Facilitates Formation of Silver Nanoparticles under Natural and Simulated Sunlight Conditions.
    Tan Z; Guo X; Yin Y; Wang B; Bai Q; Li X; Liu J; Jiang G
    Environ Sci Technol; 2019 Dec; 53(23):13802-13811. PubMed ID: 31697066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.