These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29969064)

  • 1. Automated Analysis of Aggregated Datasets to Identify Climatic Predictors of Botrytis Bunch Rot in Wine Grapes.
    Hill GN; Beresford RM; Evans KJ
    Phytopathology; 2019 Jan; 109(1):84-95. PubMed ID: 29969064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BotRisk: simulating the annual bunch rot risk on grapevines (Vitis vinifera L. cv. Riesling) based on meteorological data.
    Molitor D; Baus O; Didry Y; Junk J; Hoffmann L; Beyer M
    Int J Biometeorol; 2020 Sep; 64(9):1571-1582. PubMed ID: 32436136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards.
    Calvo-Garrido C; Usall J; Viñas I; Elmer PA; Cases E; Teixidó N
    Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of
    Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V
    Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.
    Steel CC; Blackman JW; Schmidtke LM
    J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consideration of Latent Infections Improves the Prediction of Botrytis Bunch Rot Severity in Vineyards.
    Fedele G; González-Domínguez E; Delière L; Díez-Navajas AM; Rossi V
    Plant Dis; 2020 May; 104(5):1291-1297. PubMed ID: 32191557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea.
    Herzog K; Wind R; Töpfer R
    Sensors (Basel); 2015 May; 15(6):12498-512. PubMed ID: 26024417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control strategies against grey mould (Botrytis cinerea Pers.: Fr) and corresponding fungicide residues in grapes and wines.
    Edder P; Ortelli D; Viret O; Cognard E; De Montmollin A; Zali O
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):719-25. PubMed ID: 19680943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Antagonism Toward
    Calvo-Garrido C; Roudet J; Aveline N; Davidou L; Dupin S; Fermaud M
    Front Plant Sci; 2019; 10():105. PubMed ID: 30804972
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolic influence of Botrytis cinerea infection in champagne base wine.
    Hong YS; Cilindre C; Liger-Belair G; Jeandet P; Hertkorn N; Schmitt-Kopplin P
    J Agric Food Chem; 2011 Jul; 59(13):7237-45. PubMed ID: 21604814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to
    Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R
    Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454
    [No Abstract]   [Full Text] [Related]  

  • 13. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents.
    Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N
    Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X; Glawe DA; Kramer E; Weller D; Okubara PA
    Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel film-forming formulations of the biocontrol agent Candida sake CPA-1: biocontrol efficacy and performance at field conditions in organic wine grapes.
    Carbó A; Torres R; Usall J; Marín A; Chiralt A; Teixidó N
    Pest Manag Sci; 2019 Apr; 75(4):959-968. PubMed ID: 30192050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotting Grapes Don't Improve with Age: Cluster Rot Disease Complexes, Management, and Future Prospects.
    Crandall SG; Spychalla J; Crouch UT; Acevedo FE; Naegele RP; Miles TD
    Plant Dis; 2022 Aug; 106(8):2013-2025. PubMed ID: 35108071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes.
    Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ
    Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype.
    Ciliberti N; Fermaud M; Roudet J; Rossi V
    Phytopathology; 2015 Aug; 105(8):1090-6. PubMed ID: 26218433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of
    Fedele G; González-Domínguez E; Si Ammour M; Languasco L; Rossi V
    Plant Dis; 2020 Mar; 104(3):808-816. PubMed ID: 31944905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungi and mycotoxins in vineyards and grape products.
    Hocking AD; Leong SL; Kazi BA; Emmett RW; Scott ES
    Int J Food Microbiol; 2007 Oct; 119(1-2):84-8. PubMed ID: 17765989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.