These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29969121)

  • 1. Aggregation and fragmentation in liquids with dispersed nanoparticles.
    Jeżewski W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18879-18888. PubMed ID: 29969121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of long-range interactions on nanoparticle-induced aggregation.
    Jeżewski W
    Phys Chem Chem Phys; 2016 Aug; 18(33):22929-36. PubMed ID: 27485887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of aggregation in liquids with dispersed nanoparticles.
    Jeżewski W
    Phys Chem Chem Phys; 2015 Apr; 17(14):8828-35. PubMed ID: 25745674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation.
    Dukhin S; Zhu C; Dave RN; Yu Q
    Adv Colloid Interface Sci; 2005 Jun; 114-115():119-31. PubMed ID: 15936286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloid stability of thymine-functionalized gold nanoparticles.
    Zhou J; Beattie DA; Ralston J; Sedev R
    Langmuir; 2007 Nov; 23(24):12096-103. PubMed ID: 17958386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation modeling of the influence of pH on the aggregation of variably charged nanoparticles.
    Xiong Y; Liu X; Xiong H
    Sci Rep; 2021 Aug; 11(1):17386. PubMed ID: 34462496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticles in ionic liquids: interactions and organization.
    He Z; Alexandridis P
    Phys Chem Chem Phys; 2015 Jul; 17(28):18238-61. PubMed ID: 26120610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic spreading of droplets containing nanoparticles.
    Matar OK; Craster RV; Sefiane K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056315. PubMed ID: 18233764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.
    Taghavy A; Pennell KD; Abriola LM
    J Contam Hydrol; 2015 Jan; 172():48-60. PubMed ID: 25437227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle penetration through filter media and leakage through face seal interface of N95 filtering facepiece respirators.
    Rengasamy S; Eimer BC
    Ann Occup Hyg; 2012 Jul; 56(5):568-80. PubMed ID: 22294504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of retention efficiency of filters against nanoparticles in liquids using an aerosolization technique.
    Ling TY; Wang J; Pui DY
    Environ Sci Technol; 2010 Jan; 44(2):774-9. PubMed ID: 20000703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics.
    Abdellatif MH; Abdelrasoul GN; Scarpellini A; Marras S; Diaspro A
    J Colloid Interface Sci; 2015 Nov; 458():266-72. PubMed ID: 26233557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and stability of charged colloid-nanoparticle mixtures.
    Weight BM; Denton AR
    J Chem Phys; 2018 Mar; 148(11):114904. PubMed ID: 29566519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.
    Rosenholm JB
    Adv Colloid Interface Sci; 2018 Mar; 253():66-116. PubMed ID: 29422417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural study on gold nanoparticle functionalized with DNA and its non-cross-linking aggregation.
    Fujita M; Katafuchi Y; Ito K; Kanayama N; Takarada T; Maeda M
    J Colloid Interface Sci; 2012 Feb; 368(1):629-35. PubMed ID: 22143000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Interaction and Non-Close-Packed Arrangement of Nanoparticles on Large Areas.
    Schmudde M; Grunewald C; Goroncy C; Noufele CN; Stein B; Risse T; Graf C
    ACS Nano; 2016 Mar; 10(3):3525-35. PubMed ID: 26919385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.