These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29969189)

  • 1. Rapid Optimization of Reaction Conditions Based on Comprehensive Reaction Analysis Using a Continuous Flow Microwave Reactor.
    Vámosi P; Matsuo K; Masuda T; Sato K; Narumi T; Takeda K; Mase N
    Chem Rec; 2019 Jan; 19(1):77-84. PubMed ID: 29969189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback in Flow for Accelerated Reaction Development.
    Reizman BJ; Jensen KF
    Acc Chem Res; 2016 Sep; 49(9):1786-96. PubMed ID: 27525813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single-Mode Heating Toward Large-Scale Applications.
    Barham JP; Koyama E; Norikane Y; Ohneda N; Yoshimura T
    Chem Rec; 2019 Jan; 19(1):188-203. PubMed ID: 30457695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Opportunities for Organic Synthesis with Superheated Flow Chemistry.
    Bianchi P; Monbaliu JM
    Acc Chem Res; 2024 Aug; 57(15):2207-2218. PubMed ID: 39043368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor.
    Bagley MC; Fusillo V; Jenkins RL; Lubinu MC; Mason C
    Beilstein J Org Chem; 2013; 9():1957-68. PubMed ID: 24204407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation of microwave methodology to continuous flow for the efficient synthesis of diaryl ethers via a base-mediated S(N)Ar reaction.
    Wiles C; Watts P
    Beilstein J Org Chem; 2011; 7():1360-71. PubMed ID: 22043247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave Intensified Synthesis: Batch and Flow Chemistry.
    Ching Lau C; Kemal Bayazit M; Reardon PJT; Tang J
    Chem Rec; 2019 Jan; 19(1):172-187. PubMed ID: 30525292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective, Scalable Synthesis of C
    Barham JP; Tanaka S; Koyama E; Ohneda N; Okamoto T; Odajima H; Sugiyama JI; Norikane Y
    J Org Chem; 2018 Apr; 83(8):4348-4354. PubMed ID: 29642704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific effects in microwave chemistry explored through reactor vessel design, theory, and spectroscopy.
    Ashley B; Lovingood DD; Chiu YC; Gao H; Owens J; Strouse GF
    Phys Chem Chem Phys; 2015 Nov; 17(41):27317-27. PubMed ID: 26280744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave synthesis of zeolites. 2. Effect of vessel size, precursor volume, and irradiation method.
    Panzarella B; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2007 Nov; 111(44):12657-67. PubMed ID: 17939703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors.
    Horikoshi S; Abe H; Torigoe K; Abe M; Serpone N
    Nanoscale; 2010 Aug; 2(8):1441-7. PubMed ID: 20820732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a resonant-type microwave reactor and its application to the synthesis of positron emission tomography radiopharmaceuticals.
    Kimura H; Yagi Y; Ohneda N; Odajima H; Ono M; Saji H
    J Labelled Comp Radiopharm; 2014 Oct; 57(12):680-6. PubMed ID: 25294422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor.
    De Bruyn M; Budarin VL; Sturm GSJ; Stefanidis GD; Radoiu M; Stankiewicz A; Macquarrie DJ
    J Am Chem Soc; 2017 Apr; 139(15):5431-5436. PubMed ID: 28345911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous microwave flow synthesis of mesoporous hydroxyapatite.
    Akram M; Alshemary AZ; Goh YF; Wan Ibrahim WA; Lintang HO; Hussain R
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():356-62. PubMed ID: 26249601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.
    Panzarella B; Tompsett G; Conner WC; Jones K
    Chemphyschem; 2007 Feb; 8(3):357-69. PubMed ID: 17253593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Flow Alcoholysis of Dialkyl H-Phosphonates with Aliphatic Alcohols.
    Bálint E; Tajti Á; Tóth N; Keglevich G
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29970851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Outlet Temperature of a Flow Reactor Heated by Microwave Irradiation.
    Takeda K; Yanagi N; Nonaka K; Mase N
    Chem Rec; 2019 Jan; 19(1):140-145. PubMed ID: 30375178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical assessment of the specific role of microwave irradiation in the synthesis of ZnO micro- and nanostructured materials.
    Baghbanzadeh M; Skapin SD; Orel ZC; Kappe CO
    Chemistry; 2012 Apr; 18(18):5724-31. PubMed ID: 22454084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.