BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29969279)

  • 1. Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: application to 120 clinical cases.
    Fougeron N; Rohan PY; Macron A; Travert C; Pillet H; Skalli W
    Comput Methods Biomech Biomed Engin; 2018 Apr; 21(5):408-412. PubMed ID: 29969279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases.
    Bucki M; Lobos C; Payan Y
    Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):904-13. PubMed ID: 25099570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.
    Bijar A; Rohan PY; Perrier P; Payan Y
    Ann Biomed Eng; 2016 Jan; 44(1):16-34. PubMed ID: 26577253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):104-13. PubMed ID: 23293071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies.
    Viceconti M; Davinelli M; Taddei F; Cappello A
    J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.
    Dai Y; Niebur GL
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):599-606. PubMed ID: 19308870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific modelling of the foot: automated hexahedral meshing of the bones.
    Lievers WB; Kent RW
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1287-97. PubMed ID: 22436002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject specific hexahedral Finite Element mesh generation of the pelvis from bi-Planar X-ray images.
    Fougeron N; Macron A; Pillet H; Skalli W; Rohan PY
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(sup1):75-76. PubMed ID: 29088655
    [No Abstract]   [Full Text] [Related]  

  • 16. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.
    Huang H; Xiang C; Zeng C; Ouyang H; Wong KK; Huang W
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):743-53. PubMed ID: 26577713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method for the automatic mesh generation of bone segments from CT data.
    Viceconti M; Zannoni C; Testi D; Cappello A
    J Med Eng Technol; 1999; 23(2):77-81. PubMed ID: 10356679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
    Baldwin MA; Langenderfer JE; Rullkoetter PJ; Laz PJ
    Comput Methods Programs Biomed; 2010 Mar; 97(3):232-40. PubMed ID: 19695732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.