BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29969405)

  • 1. Optimized Computer-Aided Segmentation and Three-Dimensional Reconstruction Using Intracoronary Optical Coherence Tomography.
    Athanasiou L; Nezami FR; Galon MZ; Lopes AC; Lemos PA; de la Torre Hernandez JM; Ben-Assa E; Edelman ER
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1168-1176. PubMed ID: 29969405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Art care: A multi-modality coronary 3D reconstruction and hemodynamic status assessment software.
    Siogkas PK; Stefanou KA; Athanasiou LS; Papafaklis MI; Michalis LK; Fotiadis DI
    Technol Health Care; 2018; 26(1):187-193. PubMed ID: 29060945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
    Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD
    Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of stented coronary arteries from optical coherence tomography images: Feasibility, validation, and repeatability of a segmentation method.
    Chiastra C; Montin E; Bologna M; Migliori S; Aurigemma C; Burzotta F; Celi S; Dubini G; Migliavacca F; Mainardi L
    PLoS One; 2017; 12(6):e0177495. PubMed ID: 28574987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling.
    Bologna M; Migliori S; Montin E; Rampat R; Dubini G; Migliavacca F; Mainardi L; Chiastra C
    PLoS One; 2019; 14(3):e0213603. PubMed ID: 30870477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA.
    Toutouzas K; Chatzizisis YS; Riga M; Giannopoulos A; Antoniadis AP; Tu S; Fujino Y; Mitsouras D; Doulaverakis C; Tsampoulatidis I; Koutkias VG; Bouki K; Li Y; Chouvarda I; Cheimariotis G; Maglaveras N; Kompatsiaris I; Nakamura S; Reiber JH; Rybicki F; Karvounis H; Stefanadis C; Tousoulis D; Giannoglou GD
    Atherosclerosis; 2015 Jun; 240(2):510-9. PubMed ID: 25932791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D reconstruction of coronary arteries using frequency domain optical coherence tomography images and biplane angiography.
    Athanasiou LS; Bourantas CV; Siogkas PK; Sakellarios AI; Exarchos TP; Naka KK; Papafaklis MI; Michalis LK; Prati F; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2647-50. PubMed ID: 23366469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans.
    Papafaklis MI; Bourantas CV; Yonetsu T; Vergallo R; Kotsia A; Nakatani S; Lakkas LS; Athanasiou LS; Naka KK; Fotiadis DI; Feldman CL; Stone PH; Serruys PW; Jang IK; Michalis LK
    EuroIntervention; 2015 Aug; 11(4):407-15. PubMed ID: 24974809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images.
    Athanasiou LS; Bourantas CV; Rigas G; Sakellarios AI; Exarchos TP; Siogkas PK; Ricciardi A; Naka KK; Papafaklis MI; Michalis LK; Prati F; Fotiadis DI
    J Biomed Opt; 2014 Feb; 19(2):026009. PubMed ID: 24525828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography.
    Zhu Y; Zhu F; Ding Z; Tao K; Lai T; Kuang H; Hua P; Shang M; Hu J; Yu Y; Liu T
    J Biophotonics; 2021 Mar; 14(3):e202000370. PubMed ID: 33247508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography--comparison and registration with IVUS.
    Athanasiou L; Rigas G; Sakellarios AI; Exarchos TP; Siogkas PK; Bourantas CV; Garcia-Garcia HM; Lemos PA; Falcao BA; Michalis LK; Parodi O; Vozzi F; Fotiadis DI
    BMC Med Imaging; 2016 Jan; 16():9. PubMed ID: 26785613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point-Cloud Method for Automated 3D Coronary Tree Reconstruction From Multiple Non-Simultaneous Angiographic Projections.
    Banerjee A; Galassi F; Zacur E; De Maria GL; Choudhury RP; Grau V
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1278-1290. PubMed ID: 31613752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced contour detection for three-dimensional intracoronary ultrasound: a validation--in vitro and in vivo.
    Koning G; Dijkstra J; von Birgelen C; Tuinenburg JC; Brunette J; Tardif JC; Oemrawsingh PW; Sieling C; Melsa S; Reiber JH
    Int J Cardiovasc Imaging; 2002 Aug; 18(4):235-48. PubMed ID: 12123316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel hybrid approach for reconstruction of coronary bifurcations using angiography and OCT.
    Andrikos IO; Sakellarios AI; Siogkas PK; Rigas G; Exarchos TP; Athanasiou LS; Karanasos A; Toutouzas K; Tousoulis D; Michalis LK; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():588-591. PubMed ID: 29059941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA.
    Schaap M; van Walsum T; Neefjes L; Metz C; Capuano E; de Bruijne M; Niessen W
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1974-86. PubMed ID: 21708497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography.
    Pociask E; Malinowski KP; Ślęzak M; Jaworek-Korjakowska J; Wojakowski W; Roleder T
    J Healthc Eng; 2018; 2018():1414076. PubMed ID: 30792831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.
    Celi S; Berti S
    Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images.
    Lee KE; Lee SH; Shin ES; Shim EB
    Biomed Eng Online; 2017 Jun; 16(1):83. PubMed ID: 28651585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses.
    Galassi F; Alkhalil M; Lee R; Martindale P; Kharbanda RK; Channon KM; Grau V; Choudhury RP
    PLoS One; 2018; 13(1):e0190650. PubMed ID: 29298341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images.
    Migliori S; Chiastra C; Bologna M; Montin E; Dubini G; Aurigemma C; Fedele R; Burzotta F; Mainardi L; Migliavacca F
    Med Eng Phys; 2017 Sep; 47():105-116. PubMed ID: 28711588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.