BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 29969421)

  • 1. Ordinal Pattern: A New Descriptor for Brain Connectivity Networks.
    Zhang D; Huang J; Jie B; Du J; Tu L; Liu M
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1711-1722. PubMed ID: 29969421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyper-connectivity of functional networks for brain disease diagnosis.
    Jie B; Wee CY; Shen D; Zhang D
    Med Image Anal; 2016 Aug; 32():84-100. PubMed ID: 27060621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of Mild Cognitive Impairment With Ordinal Pattern Kernel.
    Ma K; Huang S; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1030-1040. PubMed ID: 35404822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis.
    Jie B; Liu M; Zhang D; Shen D
    IEEE Trans Image Process; 2018 May; 27(5):2340-2353. PubMed ID: 29470170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI.
    Zhu X; Du X; Kerich M; Lohoff FW; Momenan R
    Neurosci Lett; 2018 May; 676():27-33. PubMed ID: 29626649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis.
    Huang H; Liu X; Jin Y; Lee SW; Wee CY; Shen D
    Hum Brain Mapp; 2019 Feb; 40(3):833-854. PubMed ID: 30357998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.
    Kozák LR; van Graan LA; Chaudhary UJ; Szabó ÁG; Lemieux L
    Neuroimage; 2017 Dec; 163():319-341. PubMed ID: 28899742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Alzheimer's Disease Classification by Combining Multiple Measures.
    Liu J; Wang J; Tang Z; Hu B; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1649-1659. PubMed ID: 28749356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain connectivity hyper-network for MCI classification.
    Jie B; Shen D; Zhang D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):724-32. PubMed ID: 25485444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating structural symmetry of weighted brain networks via graph matching.
    Hu C; El Fakhri G; Li Q
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):733-40. PubMed ID: 25485445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating functional brain networks by incorporating a modularity prior.
    Qiao L; Zhang H; Kim M; Teng S; Zhang L; Shen D
    Neuroimage; 2016 Nov; 141():399-407. PubMed ID: 27485752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting clinical symptoms of attention deficit hyperactivity disorder based on temporal patterns between and within intrinsic connectivity networks.
    Wang XH; Jiao Y; Li L
    Neuroscience; 2017 Oct; 362():60-69. PubMed ID: 28843999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.
    Jie B; Liu M; Shen D
    Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regularized Bagged Canonical Component Analysis for Multiclass Learning in Brain Imaging.
    Sevilla-Salcedo C; Gómez-Verdejo V; Tohka J;
    Neuroinformatics; 2020 Oct; 18(4):641-659. PubMed ID: 32504258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A concise and persistent feature to study brain resting-state network dynamics: Findings from the Alzheimer's Disease Neuroimaging Initiative.
    Kuang L; Han X; Chen K; Caselli RJ; Reiman EM; Wang Y;
    Hum Brain Mapp; 2019 Mar; 40(4):1062-1081. PubMed ID: 30569583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A longitudinal model for functional connectivity networks using resting-state fMRI.
    Hart B; Cribben I; Fiecas M;
    Neuroimage; 2018 Sep; 178():687-701. PubMed ID: 29879474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weight-conserving characterization of complex functional brain networks.
    Rubinov M; Sporns O
    Neuroimage; 2011 Jun; 56(4):2068-79. PubMed ID: 21459148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Cognitive States Using Regularity Partitions.
    Pappas I; Pardalos P
    PLoS One; 2015; 10(8):e0137012. PubMed ID: 26317983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupted Time-Dependent and Functional Connectivity Brain Network in Alzheimer's Disease: A Resting-State fMRI Study Based on Visibility Graph.
    Gao Z; Feng Y; Ma C; Ma K; Cai Q;
    Curr Alzheimer Res; 2020; 17(1):69-79. PubMed ID: 32053076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
    Shen H; Wang L; Liu Y; Hu D
    Neuroimage; 2010 Feb; 49(4):3110-21. PubMed ID: 19931396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.