BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29969512)

  • 21. Antioxidation properties and mechanism of action of dihydromyricetin from Ampelopsis grossedentata.
    Zhang YS; Ning ZX; Yang SZ; Wu H
    Yao Xue Xue Bao; 2003 Apr; 38(4):241-4. PubMed ID: 12889119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in situ study on characterization and mechanism of the intestinal absorption of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside.
    Wang C; Zhou Y; Gong X; Zheng L; Li Y
    BMC Pharmacol Toxicol; 2020 Jan; 21(1):7. PubMed ID: 31969193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue Distribution, Excretion, and Metabolic Profile of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) after Oral Administration in Rats.
    Fan L; Tong Q; Dong W; Yang G; Hou X; Xiong W; Shi C; Fang J; Wang W
    J Agric Food Chem; 2017 Jun; 65(23):4597-4604. PubMed ID: 28534405
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Sun W; Liu S; Lu A; Yang F; Duan J
    Nat Prod Res; 2022 Sep; 36(17):4448-4451. PubMed ID: 34583588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells.
    Zhu X; Zhang X; Ma G; Yan J; Wang H; Yang Q
    J Pharm Pharm Sci; 2011; 14(3):325-35. PubMed ID: 21824448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: in vitro and in vivo evaluations.
    Zhao X; Shi C; Zhou X; Lin T; Gong Y; Yin M; Fan L; Wang W; Fang J
    Eur J Pharm Sci; 2019 Oct; 138():104994. PubMed ID: 31302210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical properties of dihydromyricetin and the effects of ascorbic acid on its stability and bioavailability.
    Sun CC; Li Y; Yin ZP; Zhang QF
    J Sci Food Agric; 2021 Jul; 101(9):3862-3869. PubMed ID: 33336364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intestinal absorption mechanisms of araloside A in situ single-pass intestinal perfusion and in vitro Caco-2 cell model.
    Yang H; Zhai B; Fan Y; Wang J; Sun J; Shi Y; Guo D
    Biomed Pharmacother; 2018 Oct; 106():1563-1569. PubMed ID: 30119231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1.
    Luo FR; Paranjpe PV; Guo A; Rubin E; Sinko P
    Drug Metab Dispos; 2002 Jul; 30(7):763-70. PubMed ID: 12065434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intestinal ciprofloxacin efflux: the role of breast cancer resistance protein (ABCG2).
    Haslam IS; Wright JA; O'Reilly DA; Sherlock DJ; Coleman T; Simmons NL
    Drug Metab Dispos; 2011 Dec; 39(12):2321-8. PubMed ID: 21930826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solid-state characterization of optically pure (+)Dihydromyricetin extracted from Ampelopsis grossedentata leaves.
    Wang C; Xiong W; Reddy Perumalla S; Fang J; Calvin Sun C
    Int J Pharm; 2016 Sep; 511(1):245-252. PubMed ID: 27418561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells.
    Jiang B; Le L; Pan H; Hu K; Xu L; Xiao P
    Brain Res Bull; 2014 Oct; 109():117-26. PubMed ID: 25451453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intestinal absorption mechanisms of MTBH, a novel hesperetin derivative, in Caco-2 cells, and potential involvement of monocarboxylate transporter 1 and multidrug resistance protein 2.
    Shen C; Chen R; Qian Z; Meng X; Hu T; Li Y; Chen Z; Huang C; Hu C; Li J
    Eur J Pharm Sci; 2015 Oct; 78():214-24. PubMed ID: 26231439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix.
    Tesoriere L; Gentile C; Angileri F; Attanzio A; Tutone M; Allegra M; Livrea MA
    Eur J Nutr; 2013 Apr; 52(3):1077-87. PubMed ID: 22806766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Piperine enhances the bioavailability of silybin via inhibition of efflux transporters BCRP and MRP2.
    Bi X; Yuan Z; Qu B; Zhou H; Liu Z; Xie Y
    Phytomedicine; 2019 Feb; 54():98-108. PubMed ID: 30668388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers.
    Ai Z; Liu S; Qu F; Zhang H; Chen Y; Ni D
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30917581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intestinal absorption mechanisms of prenylated flavonoids present in the heat-processed Epimedium koreanum Nakai (Yin Yanghuo).
    Chen Y; Zhao YH; Jia XB; Hu M
    Pharm Res; 2008 Sep; 25(9):2190-9. PubMed ID: 18459036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oleic acid increases uptake and decreases the P-gp-mediated efflux of the veterinary anthelmintic Ivermectin.
    Houshaymi B; Nasreddine N; Kedees M; Soayfane Z
    Drug Res (Stuttg); 2019 Feb; 69(3):173-180. PubMed ID: 30103215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a novel
    Zhang J; Penny J; Lu JR
    Int J Food Sci Nutr; 2020 Aug; 71(5):549-562. PubMed ID: 31847617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MDR1 and BCRP Transporter-Mediated Drug-Drug Interaction between Rilpivirine and Abacavir and Effect on Intestinal Absorption.
    Reznicek J; Ceckova M; Ptackova Z; Martinec O; Tupova L; Cerveny L; Staud F
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28696229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.