These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
732 related articles for article (PubMed ID: 29969697)
21. Transcriptome and genome sequencing elucidates the molecular basis for the high yield and good quality of the hybrid rice variety Chuanyou6203. Ren J; Zhang F; Gao F; Zeng L; Lu X; Zhao X; Lv J; Su X; Liu L; Dai M; Xu J; Ren G Sci Rep; 2020 Nov; 10(1):19935. PubMed ID: 33203889 [TBL] [Abstract][Full Text] [Related]
22. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. Huang Y; Zhao S; Fu Y; Sun H; Ma X; Tan L; Liu F; Sun X; Sun H; Gu P; Xie D; Sun C; Zhu Z Plant J; 2018 Nov; 96(4):716-733. PubMed ID: 30101570 [TBL] [Abstract][Full Text] [Related]
23. Combined analysis and miRNA expression profiles of the flowering related genes in common wild rice (oryza rufipogon Griff.). Wang J; Long Y; Zhang J; Xue M; Huang G; Huang K; Yuan Q; Pei X Genes Genomics; 2018 Aug; 40(8):835-845. PubMed ID: 30047109 [TBL] [Abstract][Full Text] [Related]
24. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Ray S; Agarwal P; Arora R; Kapoor S; Tyagi AK Mol Genet Genomics; 2007 Nov; 278(5):493-505. PubMed ID: 17636330 [TBL] [Abstract][Full Text] [Related]
25. Genome-wide transcriptome profile of rice hybrids with and without Oryza rufipogon introgression reveals candidate genes for yield. Guttikonda H; Thummala SR; Agarwal S; Mangrauthia SK; Ramanan R; Neelamraju S Sci Rep; 2020 Mar; 10(1):4873. PubMed ID: 32184449 [TBL] [Abstract][Full Text] [Related]
26. Genetic Diversity and Phenotypic Variation in an Introgression Line Population Derived from an Interspecific Cross between Oryza glaberrima and Oryza sativa. Chen C; He W; Nassirou TY; Zhou W; Yin Y; Dong X; Rao Q; Shi H; Zhao W; Efisue A; Jin D PLoS One; 2016; 11(9):e0161746. PubMed ID: 27603678 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. Wang D; Pan Y; Zhao X; Zhu L; Fu B; Li Z BMC Genomics; 2011 Mar; 12():149. PubMed ID: 21406116 [TBL] [Abstract][Full Text] [Related]
28. Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Guan S; Xu Q; Ma D; Zhang W; Xu Z; Zhao M; Guo Z Gene; 2019 Feb; 685():96-105. PubMed ID: 30389557 [TBL] [Abstract][Full Text] [Related]
29. Transcriptional changes of rice in response to rice black-streaked dwarf virus. Ahmed MMS; Ji W; Wang M; Bian S; Xu M; Wang W; Zhang J; Xu Z; Yu M; Liu Q; Zhang C; Zhang H; Tang S; Gu M; Yu H Gene; 2017 Sep; 628():38-47. PubMed ID: 28700950 [TBL] [Abstract][Full Text] [Related]
30. Study of expressions of miRNAs in the spikelets based on their spatial location on panicle in rice cultivars provided insight into their influence on grain development. Chandra T; Mishra S; Panda BB; Sahu G; Dash SK; Shaw BP Plant Physiol Biochem; 2021 Feb; 159():244-256. PubMed ID: 33388659 [TBL] [Abstract][Full Text] [Related]
31. Comparative transcriptome analysis reveals major genes, transcription factors and biosynthetic pathways associated with leaf senescence in rice under different nitrogen application. Zhang Y; Wang N; He C; Gao Z; Chen G BMC Plant Biol; 2024 May; 24(1):419. PubMed ID: 38760728 [TBL] [Abstract][Full Text] [Related]
33. Genetic architecture to cause dynamic change in tiller and panicle numbers revealed by genome-wide association study and transcriptome profile in rice. Ma X; Li F; Zhang Q; Wang X; Guo H; Xie J; Zhu X; Ullah Khan N; Zhang Z; Li J; Li Z; Zhang H Plant J; 2020 Dec; 104(6):1603-1616. PubMed ID: 33058400 [TBL] [Abstract][Full Text] [Related]
34. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae. Tariq R; Wang C; Qin T; Xu F; Tang Y; Gao Y; Ji Z; Zhao K Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29498672 [TBL] [Abstract][Full Text] [Related]
35. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. Biselli C; Bagnaresi P; Cavalluzzo D; Urso S; Desiderio F; Orasen G; Gianinetti A; Righettini F; Gennaro M; Perrini R; Ben Hassen M; Sacchi GA; Cattivelli L; Valè G BMC Genomics; 2015 Dec; 16():1091. PubMed ID: 26689934 [TBL] [Abstract][Full Text] [Related]
36. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication. Zhang F; Xu T; Mao L; Yan S; Chen X; Wu Z; Chen R; Luo X; Xie J; Gao S BMC Plant Biol; 2016 Apr; 16():103. PubMed ID: 27118394 [TBL] [Abstract][Full Text] [Related]
37. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits. Ta KN; Khong NG; Ha TL; Nguyen DT; Mai DC; Hoang TG; Phung TPN; Bourrie I; Courtois B; Tran TTH; Dinh BY; LA TN; DO NV; Lebrun M; Gantet P; Jouannic S BMC Plant Biol; 2018 Nov; 18(1):282. PubMed ID: 30428844 [TBL] [Abstract][Full Text] [Related]
38. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138 [TBL] [Abstract][Full Text] [Related]
39. Transcriptome Analysis of He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185 [TBL] [Abstract][Full Text] [Related]
40. Transcriptome Analysis Provides Insights into Grain Filling in Foxtail Millet ( Wang T; Song H; Li P; Wei Y; Hu N; Chen Z; Wang W; Liu J; Zhang B; Peng R Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708737 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]